题意:求闭区间内能被6和8组成的数字整除的数目。n<=1e11.

我们可以预处理出这些6和8组成的数字,大概2500个,然后排除一些如88,66的情况。这样大概还剩下1000个。

转化为[0,r]和[0,l-1]的问题,显然需要运用容斥原理。ans=n/6+n/8+n/68+...+...-n/lcm(6,8)-n/lcm(6,68)......

因此用dfs即可计算出来,这样一看复杂度好像是2^1000的样子,但是注意到lcm增长的很快,如果lcm>n那么显然之后的这些情况就可以忽略了。

这就是一个强有力的剪枝。

另外从大到小dfs要比从小到大dfs要好。大概常数小?

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... LL num[], pos1, pos2, p[], mark[];
void init(){
p[]=; FOR(i,,) p[i]=p[i-]*;
int l=, r=, tmpl, tmpr;
num[++pos1]=; num[++pos1]=;
FOR(i,,) {
tmpl=r+;
FOR(j,l,r) num[++pos1]=*p[i-]+num[j];
FOR(j,l,r) num[++pos1]=*p[i-]+num[j];
tmpr=pos1;
l=tmpl; r=tmpr;
}
FOR(i,,pos1) {
int flag=true;
FO(j,,i) if (num[i]%num[j]==) {flag=false; break;}
if (flag) mark[++pos2]=num[i];
}
mark[++pos2]=1e16;
}
LL dfs(int pos, int flag, LL x, LL cheng){
if (pos<=) return ;
LL res=;
res+=dfs(pos-,flag,x,cheng);
LL tmp=__gcd(cheng,mark[pos]);
if (cheng/tmp<=(double)x/mark[pos]) {
LL tt=cheng/tmp*mark[pos];
res+=dfs(pos-,flag^,x,tt);
res+=(flag?x/tt:-x/tt);
}
return res;
}
LL sol(LL x){
for (int i=pos2; i>=; --i) if (mark[i]<=x) return dfs(i,,x,);
return ;
}
int main ()
{
init();
LL a, b;
scanf("%lld%lld",&a,&b);
printf("%lld\n",sol(b)-sol(a-));
return ;
}

BZOJ 1853 幸运数字(容斥原理+dfs)的更多相关文章

  1. [SCOI2010]幸运数字 [容斥原理 dfs]

    题意:"幸运号码"是十进制表示中只包含数字6和8的那些号码,求\([l,r]:r \le 10^10\)之间"幸运号码"的倍数个数 发现幸运号码貌似很少唉,去掉 ...

  2. BZOJ 1853 幸运数字

    需要优化一波常数. 以及刚才那个版本是错的. #include<iostream> #include<cstdio> #include<cstring> #incl ...

  3. Bzoj 1853: [Scoi2010]幸运数字 容斥原理,深搜

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 1774  Solved: 644[Submit][Status] ...

  4. 1853: [Scoi2010]幸运数字[容斥原理]

    1853: [Scoi2010]幸运数字 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 2405  Solved: 887[Submit][Status] ...

  5. BZOJ 4568 幸运数字

    题目传送门 4568: [Scoi2016]幸运数字 Time Limit: 60 Sec Memory Limit: 256 MB Description A 国共有 n 座城市,这些城市由 n-1 ...

  6. BZOJ1853 [Scoi2010]幸运数字 容斥原理

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1853 题意概括 求一个区间范围内,近似幸运数字的个数. 定义: 幸运数字:仅由6或者8组成的数字. ...

  7. 【BZOJ1853】[Scoi2010]幸运数字 容斥原理+搜索

    Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的"幸运号码"是十进制表示中只包含数字6和8的那些号码,比如68,666,88 ...

  8. [luogu2576 SCOI2010] 幸运数字 (容斥原理)

    传送门 Description 在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的"幸运号码"是十进制表示中只包含数字6和8的那些号码,比如68,66 ...

  9. bzoj1853幸运数字——容斥原理

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1853 dfs实现容斥原理即可. 注意:若在init中写“cnt++”,则出来后需要先cnt-- ...

随机推荐

  1. linux IPC机制学习博客

    要求 研究Linux下IPC机制:原理,优缺点,每种机制至少给一个示例,提交研究博客的链接 - 共享内存 - 管道 - FIFO - 信号 - 消息队列 研究博客 管道(PIPE) 管道(PIPE): ...

  2. (ex)Lucas总结

    (ex)Lucas总结 普通Lucas 求 \[ C_n^m\;mod\;p \] 其中\(n,m,p\leq 10^5\)其中\(p\)为质数 公式不难背,那就直接背吧... \[ C_n^m\;m ...

  3. HttpClient使用详解 (一)

    Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且 ...

  4. Unity Lighting - Light Probes 光照探针(十)

      Light Probes 光照探针 Only static objects are considered by Unity’s Baked or Precomputed Realtime GI s ...

  5. 人脸辨识,用树莓派Raspberry Pi实现舵机云台追踪脸孔

    影像辨识作为近年最热门的专业技术之一,广泛用于智慧监视器.车电监控.智慧工厂.生物医疗电子等等:其中,人脸辨识是一个很重要的部分,网络上已经有相当多的资源可供下载使用:于是我们使用舵机云台作为镜头旋转 ...

  6. python学习笔记01 --------------hello world 与变量。

    1.第一个程序: print('hello world') 输出结果: hello world 2.变量 2.1 变量的作用: 把程序运算的中间结果临时存到内存里,以备后面的代码继续调用. 2.2 变 ...

  7. 使用performance进行前端性能监控

    该文章仅作为自己的总结 1.performance.timing对象 navigationStart:当前浏览器窗口的前一个网页关闭,发生unload事件时的Unix毫秒时间戳.如果没有前一个网页,则 ...

  8. 4星|《财经》2018年第13期:年轻人大多从大三和大四起开始就从QQ向微信转移

    <财经>2018年第13期 总第530期 旬刊 本期主要话题是快递业,其他我感兴趣的重要话题还有:香港9价HPV疫苗断供风波:华盛顿邮报被贝佐斯收购后这几年的变化:北京二中朝阳学校的划片风 ...

  9. Echarts-K线图提示框改头换面

    工作: 使用Hbuilder建web工程,加入echarts相关库,根据需要更改K线图及其的提示样式,去除默认提示,使用异步加载echarts的数据,数据格式为json. 需要注意的K线图和5日均线, ...

  10. Openstack 10 云环境安装

    概述 资源规划 Undercloud Installation Overcloud Installation Trouble Shooting 附录 本指南介绍了如何使用 Red Hat OpenSt ...