python学习笔记(三):numpy基础
- Counter函数可以对列表中数据进行统计每一个有多少种
- most_common(10)可以提取前十位
from collections import Counter
a = ['q','q','w','w','w']
count = Counter(a)
count.most_common(1)
[('w', 3)]
count
Counter({'q': 2, 'w': 3})
pandas中的series对象有一个value_counts方法可以计数
.fillna()函数可以替换确实值NA
import numpy as np
from numpy.random import randn
data = {i : randn() for i in range(7)}
data
{0: -0.2657989059225722,
1: -1.2517286143172295,
2: -0.6360811023039581,
3: 1.2009891917346602,
4: 1.7528414640242418,
5: -0.24155970563487628,
6: -0.7637924413712933}
- 最近的两个结果保存在_和__中
9*3
27
_
27
%pwd
# 获得当前工作目录
'D:\\Code\\Python\\code'
- 魔法命令
- %time 一条语句的执行时间
- %timeit 执行多次的平均时间
numpy基础
import numpy as np
data1 = [6, 7.5, 8],[2, 0 ,1]
arr1 = np.array(data1)
arr1
array([[6. , 7.5, 8. ],
[2. , 0. , 1. ]])
arr1.ndim
2
arr1.shape
(2, 3)
arr1.dtype
dtype('float64')
np.zeros((2, 3, 4))
array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]],
[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]])
np.ones((3))
array([1., 1., 1.])
np.arange(9)
array([0, 1, 2, 3, 4, 5, 6, 7, 8])
np.eye(3,)
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
- 数组切片后的修改会反映到原始数组上
arr = np.arange(9)
arr2 = arr[5:8]
arr2[:] = 4
arr
array([0, 1, 2, 3, 4, 4, 4, 4, 8])
arr = np.arange(9)
arr2 = arr[5:8].copy()
arr2[:] = 4
arr
array([0, 1, 2, 3, 4, 5, 6, 7, 8])
- 三维数组先是层、行、列
data = np.random.randn(4,3)
data
array([[ 0.7144327 , 0.87144603, 1.10651404],
[-0.19509352, -0.01102958, 1.8051039 ],
[ 0.03106339, 0.83767495, 0.20094192],
[ 0.96032146, -0.40303045, 1.4522938 ]])
data[[1,2,0],[1,2,0]]
# 取出来的数据为(11)(22)(00)
array([-0.01102958, 0.20094192, 0.7144327 ])
- 不连续提取数据
data[[0,2]][:,[0,2]]
# 跳着取方法一
array([[0.7144327 , 1.10651404],
[0.03106339, 0.20094192]])
data[np.ix_([0,2],[0,2])]
# 跳着取方法二
array([[0.7144327 , 1.10651404],
[0.03106339, 0.20094192]])
data.T
array([[ 0.7144327 , -0.19509352, 0.03106339, 0.96032146],
[ 0.87144603, -0.01102958, 0.83767495, -0.40303045],
[ 1.10651404, 1.8051039 , 0.20094192, 1.4522938 ]])
np.sqrt(data)
F:\Anaconda\lib\site-packages\ipykernel_launcher.py:1: RuntimeWarning: invalid value encountered in sqrt
"""Entry point for launching an IPython kernel.
array([[0.84524121, 0.93351274, 1.05190971],
[ nan, nan, 1.34354155],
[0.17624808, 0.91524584, 0.44826546],
[0.97995993, nan, 1.20511153]])
np.exp(data)
array([[2.04302734, 2.39036489, 3.02379915],
[0.82275771, 0.98903102, 6.0806032 ],
[1.03155089, 2.31098757, 1.22255377],
[2.61253617, 0.66829175, 4.27290447]])
np.rint(data)
# 四舍五入
array([[ 1., 1., 1.],
[-0., -0., 2.],
[ 0., 1., 0.],
[ 1., -0., 1.]])
np.modf(data)
# 将数据分为小数和整数部分
(array([[ 0.7144327 , 0.87144603, 0.10651404],
[-0.19509352, -0.01102958, 0.8051039 ],
[ 0.03106339, 0.83767495, 0.20094192],
[ 0.96032146, -0.40303045, 0.4522938 ]]), array([[ 0., 0., 1.],
[-0., -0., 1.],
[ 0., 0., 0.],
[ 0., -0., 1.]]))
np.isnan(data)
array([[False, False, False],
[False, False, False],
[False, False, False],
[False, False, False]])
np.where(data > 0,9,data)
array([[ 9. , 9. , 9. ],
[-0.19509352, -0.01102958, 9. ],
[ 9. , 9. , 9. ],
[ 9. , -0.40303045, 9. ]])
- axis中0表示竖向求和,1表示横向求和
np.mean(data,axis=1)
array([0.89746426, 0.5329936 , 0.35656009, 0.6698616 ])
np.in1d(data, [1,2,3])
# 查看data中每个元素是否在1,2,3内
array([False, False, False, False, False, False, False, False, False,
False, False, False])
from numpy.linalg import inv, qr
from numpy.random import randn
x = randn(5,5)
mat = x.dot(inv(x))
# 求逆
mat = np.rint(mat)
mat
array([[ 1., 0., -0., 0., 0.],
[ 0., 1., -0., 0., 0.],
[ 0., -0., 1., 0., 0.],
[-0., 0., -0., 1., -0.],
[-0., 0., 0., -0., 1.]])
np.diag(mat)
# 返回对角线元素
array([1., 1., 1., 1., 1.])
np.random.permutation(mat)
# 返回序列的随机排列
array([[ 0., -0., 1., 0., 0.],
[-0., 0., -0., 1., -0.],
[ 1., 0., -0., 0., 0.],
[-0., 0., 0., -0., 1.],
[ 0., 1., -0., 0., 0.]])
np.random.randint(0,2,12)
array([1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1])
python学习笔记(三):numpy基础的更多相关文章
- Python 学习笔记三
笔记三:函数 笔记二已取消置顶链接地址:http://www.cnblogs.com/dzzy/p/5289186.html 函数的作用: 給代码段命名,就像变量給数字命名一样 可以接收参数,像arg ...
- Python学习笔记1:基础
1.编码 默认情况下,Python 3 源码文件以 UTF-8 编码,所有字符串都是 unicode 字符串. 你也可以为源文件指定不同的字符编码.在 #! 行(首行)后插入至少一行特殊的注释行来定义 ...
- python学习笔记三 文件操作(基础篇)
文件操作 打开文件 open(name[,mode[,buffering]]) open函数使用一个文件名作为强制参数,然后返回一个文件对象.[python 3.5 把file()删除掉] w ...
- python学习笔记三 深浅copy,扩展数据类型(基础篇)
深浅copy以及赋值 对于字符串和数字而言,赋值.浅拷贝和深拷贝无意义,因为其永远指向同一个内存地址. import copy n1 = #n1 = 'hahahaha' #赋值n2 = n1#浅co ...
- Python 学习笔记之 Numpy 库——数组基础
1. 初识数组 import numpy as np a = np.arange(15) a = a.reshape(3, 5) print(a.ndim, a.shape, a.dtype, a.s ...
- python学习笔记三 函数(基础篇)
函数 内置函数 常用的内建函数: type() 列出指定对象的类型 help() 能够提供详细的帮助信息 dir() 将对象的所有特性列出 vars() 列出当前模块的所有变量 file, ...
- webdriver(python) 学习笔记三
知识点:简单的对象定位 对象的定位应该是自动化测试的核心,要想操作一个对象,首先应该识别这个对象.一个对象就是一个人一样,他会有各种的特征(属性),如比我们可以通过一个人的身份证号,姓名,或者他住在哪 ...
- Python学习笔记一(基础信息)
目录 输入输出 数据类型和变量 整数 浮点数 字符串 布尔值 空值 变量 常量 小结 欢迎关注我的博客我在马路边 说明:此笔记不是从零开始,在学习的过程中感觉需要记录一些比较重要和需要重复浏览的信息, ...
- 吴裕雄--python学习笔记:爬虫基础
一.什么是爬虫 爬虫:一段自动抓取互联网信息的程序,从互联网上抓取对于我们有价值的信息. 二.Python爬虫架构 Python 爬虫架构主要由五个部分组成,分别是调度器.URL管理器.网页下载器.网 ...
- python学习笔记三--字典
一.字典: 1. 不是序列,是一种映射, 键 :值的映射关系. 2. 没有顺序和位置的概念,只是把值存到对应的键里面. 3. 通过健而不是通过偏移量来读取 4. 任意对象的无序集合 5. 可变长,异构 ...
随机推荐
- Python学习---django惰性机制
Django惰性机制 所谓惰性机制:Publisher.objects.all()或者.filter()等都只是返回了一个QuerySet(查询结果集对象),它并不会马上执行sql,而是当调用Quer ...
- python基础语法2
一.顺序结构 顺序结构就是从上而下的一步一步的执行每行程序语句. 二.分支结构(if) 形式1: if 条件: pass 形式2: if 条件: pass else: pass 形式3: if 条件: ...
- 11、Node.js 函数
内容:普通函数,匿名函数,函数传递是如何让HTTP服务器工作的 ###普通函数例子: function say(word) { console.log(word); } function execut ...
- 解决python编码问题报错:'ascii' codec can't encode characters in position 0-15: ordinal not in range(128)
这个问题很奇怪,在服务器上执行一个写数据库的python文件,正常执行,但是使用java的ssh进行调用脚本,发现就是不执行数据库的写入,然后使用了try except的方式,打印了错误信息,发现报错 ...
- BZOJ 1562 变换序列 二分图匹配+字典序
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1562 题目大意: 思路: 逆序匹配,加边匹配的时候保持字典序小的先加入. 具体证明:h ...
- BZOJ1485:[HNOI2009]有趣的数列(卡特兰数)
Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
- P2149 [SDOI2009]Elaxia的路线
题目描述 最近,Elaxia和w**的关系特别好,他们很想整天在一起,但是大学的学习太紧张了,他们 必须合理地安排两个人在一起的时间. Elaxia和w**每天都要奔波于宿舍和实验室之间,他们 希望在 ...
- 【idea】配置node
参考: http://blog.csdn.net/stubbornaccepted/article/details/71374673 http://www.cnblogs.com/duhuo/p/42 ...
- 【ES6】最常用的es6特性(一)
参考链接: http://www.jianshu.com/p/ebfeb687eb70 http://www.cnblogs.com/Wayou/p/es6_new_features.html 1.l ...
- .net增删该查DBAccess的应用
1.首先引用dll文件 2. //DBAccess.dll引用一個dll文件 private IDBAccess _access; private static readonly stri ...