poj_1037 动态规划+字典序第k大
题目大意
给定n个数字,规定一种 cute 排序:序列中的数字大小为严格的波浪形,即 a[0] > a[1] < a[2] > a[3] < .... 或者 a[0] < a[1] > a[2] < a[3] .....。对于N个数字来说,可以构成多个cute序列,这些序列按照字典序进行排序,求出第k个序列。
题目分析
一、求字典序的第i个排列
直接一位一位枚举答案!从前到后枚举求得每一位:枚举一位时,计算在这样的前缀下,后面的总的排列数。如果严格小于总编号,则该位偏小,换更大的数,同时更新总编号;若大于等于,则该位恰好,枚举下一位,总编号不用更新。
二、使用动态规划
由于题目要求按照字典序的第k个cute序列,因此我们需要在字典序中,n个数字构成的cute序列以第i大为开头的有多少个。这样一个计数问题,有子结构 + 无后效性(需要进一步证明), 因此考虑使用动态规划。
一般使用动态规划来解决问题需要问题满足几个条件:
(1)可以划分子问题,子问题与总问题相似
(2)无后效性
由n个数字构成的cute序列(波浪形序列)中,其连续的n-1个数字肯定也是cute序列;
无后效性,在设计状态,并用动归数组dp表示状态、推演状态的时候,需要保证当前点以后的状态只和当前点的状态有关,而与当前点是如何到达(未来的状态只和当前点的当前数值有关,和过去到当前点的路径的无关)。
首先考虑 A[n] 表示n个数字构成的cute序列的总数,显然太粗糙,不知道n个数字之间的关系,无法进行状态推演;
然后考虑 A[n][i] 表示由n个数字构成的,且以n个数字中第i大为开头的cute序列的总数,这样来进行状态推演的时候,A[n][i] = sum-of(A[n-1][k]),选择哪些k,和i和k的大小关系有关,因此不能保证无后效性;
因此考虑使用 Up[n][i] 表示n个数字构成的,且以第i大为首的上升序列(a[1] > a[0])的个数;Down[n][i]表示n个数字构成的,以第i大为首的下降序列(a[1] < a[0])的个数,这样,就有递推关系:
for (int k = i; k <= m - 1; k++){
Up[m][i] += Down[m - 1][k];
}
for (int k = 1; k < i; k++){
Down[m][i] += Up[m - 1][k];
}
实现 (c++)
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
using namespace std;
#define MAX_COL_NUM 22
long long int Up[MAX_COL_NUM][MAX_COL_NUM];
long long int Down[MAX_COL_NUM][MAX_COL_NUM]; int main(){
int T, N;
long long int C;
scanf("%d", &T); //用动态规划,先求出dp数组。
//Up表示开始是上升(即A[1] > A[0]) 的波浪数组, Down表示开始是下降的波浪数组
//Up[n][i] 表示有n个数组成的序列,将第i大的数作为第一位的上升序列的个数
//Down[n][i] 表示由n个数组成的序列,将第i大的数作为第一位的下降序列个数
memset(Up, 0, sizeof(Up));
memset(Down, 0, sizeof(Down)); Up[1][1] = 1;
Down[1][1] = 1;
for (int m = 1; m <= MAX_COL_NUM - 1; m++){
for (int i = 1; i <= m; i++){
for (int k = i; k <= m - 1; k++){
Up[m][i] += Down[m - 1][k];
}
for (int k = 1; k < i; k++){
Down[m][i] += Up[m - 1][k];
}
}
} while (T--){
scanf("%d %llu", &N, &C); //候选序号,存放在vector中,便于删除
vector<int> candidates;
candidates.push_back(0);
for (int m = 1; m <= N; m++){
candidates.push_back(m);
} int result[MAX_COL_NUM]; //存放最后求出的序列
int n = N;
long long int left = C; //字典序第k大的序列
int next_dir = 2; //下一次选用的首数字和第二个数字构成上升还是下降序列,由之前序列的趋势决定
//0, 下降; 1上升; 2 both
//开始设为2,表示总序列的第一个和第二个之间的关系不明确
while (n >= 1){
int k = 1;
//n 表示,此次循环是在n个数中选择
//k 表示,此次选择n个数的第k大(这n个数放在 vector candidate中)去构成序列
while (k <= n){
if (next_dir == 0 && candidates[k] > result[N-n-1]){
if (left > Down[n][k]){
left -= Down[n][k];
}
else{
break;
}
} if (next_dir == 1 && candidates[k] < result[N-n-1]){
if (left > Up[n][k]){
left -= Up[n][k];
}
else{
break;
}
} if (next_dir == 2){
if (left > (Up[n][k] + Down[n][k])){
left -= (Up[n][k] + Down[n][k]);
}
else{
break;
}
}
k++;
}
if (k > n)
k = n;
result[N - n] = candidates[k]; next_dir = ! next_dir; //波浪形数组,方向取反 //当选择出来第一个数字之后,可以根据 left (剩余的序号)以及 Down[n][k](以选择出来的数字为开头的下降序列的个数 ) 决定
//如果 剩余的序号 小于等于 以选择出来的数字为开头的下降序列总数,则说明 第一个数字和第二个数字为下降,之后的next_dir 为上升
//否则,为下降
if (n == N){
if (left <= Down[n][k])
next_dir = 1;
else{
left -= Down[n][k];
next_dir = 0;
} } //从候选数组中删除已经选择出来的那个数
candidates.erase(candidates.begin() + k);
n --;
}
for (int i = 0; i < N; i++){
printf("%d ", result[i]);
}
printf("\n");
}
return 0;
}
poj_1037 动态规划+字典序第k大的更多相关文章
- SPOJ Lexicographical Substring Search 求字典序第k大子串 后缀自动机
题目传送门 思路:按字典序,小的字符优先选取.对于一个字符,如果以这个字符开头的子串大于等于k个,那说明这个字符是应该选的,并且选完之后,可能还要继续选.如果以这个字符开头的子串小于k个,说明这个字符 ...
- 前k大金币(动态规划,递推)
/* ///题解写的很认真,如果您觉得还行的话可以顶一下或者评论一下吗? 思路: 这题复杂在要取前k大的结果,如果只是取最大情况下的金币和,直接 动态规划递归就可以,可是前k大并不能找出什么公式,所以 ...
- hdu 5008 查找字典序第k小的子串
Boring String Problem Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Ot ...
- Permutation UVA - 11525(值域树状数组,树状数组区间第k大(离线),log方,log)(值域线段树第k大)
Permutation UVA - 11525 看康托展开 题目给出的式子(n=s[1]*(k-1)!+s[2]*(k-2)!+...+s[k]*0!)非常像逆康托展开(将n个数的所有排列按字典序排序 ...
- 后缀自动机求字典序第k小的串——p3975
又领悟到了一点新的东西,后缀自动机其实可以分为两个数据结构,一个是后缀树,还有一个是自动机 后缀树用来划分endpos集合,并且维护后缀之间的关系,此时每个结点代表的是一些后缀相同且长度连续的子串 自 ...
- 刷题-力扣-1738. 找出第 K 大的异或坐标值
1738. 找出第 K 大的异或坐标值 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/find-kth-largest-xor-co ...
- [LeetCode] Kth Largest Element in an Array 数组中第k大的数字
Find the kth largest element in an unsorted array. Note that it is the kth largest element in the so ...
- POJ2985 The k-th Largest Group[树状数组求第k大值+并查集||treap+并查集]
The k-th Largest Group Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 8807 Accepted ...
- 区间第K大(一)
Problem: 给定无序序列S:[b, e),求S中第K大的元素. Solution 1.裸排序 2.现将区间均分成两段,S1, S2,对S1,S2分别排序,然后
随机推荐
- 【动软.Net代码生成器】连接MySQL生成C#的POCO实体类(Model)
首先是工具的下载地址: 动软.Net代码生成器 该工具官网自带完整教程: 文档:http://www.maticsoft.com/help/ 例子:http://www.maticsoft.com/h ...
- Java NIO使用及原理分析 (四)(转)
在上一篇文章中介绍了关于缓冲区的一些细节内容,现在终于可以进入NIO中最有意思的部分非阻塞I/O.通常在进行同步I/O操作时,如果读取数据,代码会阻塞直至有 可供读取的数据.同样,写入调用将会阻塞直至 ...
- Entity Framework应用:使用LINQ操作
一.什么是LINQ TO EntitiesLINQ,全称是Language-INtegrated Query(集成语言查询),是.NET语言中查询数据的一种技术.LINQ to Entities是一种 ...
- java.lang.UnsatisfiedLinkError: No implementation found for int com.xxx.xx中的couldn’t find “XX.so”或loadLibrary("xxx")失败
我觉得这是个神坑,虽然早几年网上就很多po出来的解决方式,但是同样的问题,我的bug却稳如泰山,一点用都没有,好气 下面总结一下 这里前面先是有个系统打印信息 I/System.out: loadLi ...
- selenium测试(Java)(三)
控制浏览器: http://www.cnblogs.com/moonpool/p/5657752.html
- Android isUserAMonkey()
Monkey是Android上的一个自动化测试工具.产生随机事件由于压力测试等. ActivityManager.isUserAMonkey()判断当前是否有运行的Monkey测试.有就返回true. ...
- webBrowser1.Document.Cookie取不到HttpOnly的Cookie,取Cookie不完整【转】
在做数据采集时,有些网站需要输入验证码,但各网站验证码都不同,不可能有完美的识别验证码的代码,所以我也没去研究,我所采取的方案是:在winform里通过WebBrowser调用网页先手动登录系统,然后 ...
- java与c#的语法对比
1,命名空间与包 C#为了把实现相似功能的类组织在一起,引入了命名空间的概念(namespace) Java中与此对应的东西叫做包(package) 2,类的访问控制方面的不同 C#只有两种:publ ...
- unicode and utf-8
今晚听同事分享提到这个,简单总结下. Unicode字符集 Unicode的出现是因为ASCII等其他编码码不够用了,比如ASCII是英语为母语的人发明的,只要一个字节8位就能够表示26个英文字母了, ...
- sql 字符串操作
SQL Server之字符串函数 以下所有例子均Studnet表为例: 计算字符串长度len()用来计算字符串的长度 select sname ,len(sname) from student ...