BZOJ4446:[SCOI2015]小凸玩密室(树形DP)
Description
Input
Output
Sample Input
5 1 2
2 1
Sample Output
HINT
对于100%的数据,1≤N≤2×10^5,1<Ai,Bi≤10^5
Solution
神仙树形DP
一条合法的行走路径,一定是先走完一个点的子树,再访问它的兄弟的子树,访问完了就回到父节点。以此类推。
也就是说要求从某个点出发,访问完其子树后回到某个祖先的最小代价。
设$f[x][i]$表示从$x$开始访问完$x$的子树后再走到深度为$i$的祖先(设为$kfa$)的最小代价。
设$g[x][i]$表示从$x$开始访问完$x$的子树后再走到深度为$i$的祖先的另外一个儿子的最小代价。
$DP$完了之后枚举最开始先点亮哪个灯然后统计答案。因为是完全二叉树所以时空都是$nlogn$
转移见代码,手画个图对比着理解效果应该会好一点……
Code
#include<iostream>
#include<cstdio>
#define N (200009)
#define LL long long
#define ls (i<<1)
#define rs (i<<1|1)
#define kfa (i>>Depth[i]-j)
using namespace std; LL n,Depth[N],Dist[N],a[N],b[N],g[N][],f[N][],ans=1e18; void DP()
{
for (int i=n; i>=; --i)
for (int j=; j<=Depth[i]; ++j)
if (ls>n)//当前是叶子
{
f[i][j]=(Dist[i]-Dist[kfa])*a[kfa];
g[i][j]=(Dist[i]-Dist[kfa]+b[kfa]+b[kfa^])*a[kfa^];
}
else if (ls==n)//只有左儿子
{
f[i][j]=b[ls]*a[ls]+f[ls][j];
g[i][j]=b[ls]*a[ls]+g[ls][j];
}
else//左右儿子都有
{
f[i][j]=min(
b[ls]*a[ls]+g[ls][Depth[ls]]+f[rs][j],
b[rs]*a[rs]+g[rs][Depth[rs]]+f[ls][j]);
g[i][j]=min(
b[ls]*a[ls]+g[ls][Depth[ls]]+g[rs][j],
b[rs]*a[rs]+g[rs][Depth[rs]]+g[ls][j]);
}
} int main()
{
scanf("%lld",&n);
for (int i=; i<=n; ++i)
scanf("%lld",&a[i]);
for (int i=; i<=n; ++i)
scanf("%lld",&b[i]);
for (int i=; i<=n; ++i)
{
Depth[i]=Depth[i>>]+;
Dist[i]=Dist[i>>]+b[i];
}
DP();
for (int i=; i<=n; ++i)//枚举最先点哪个灯统计答案
{
LL now=f[i][Depth[i]-];
for (int j=i; j!=; j>>=)
if ((j^)>n) now+=b[j>>]*a[j>>];
else now+=b[j^]*a[j^]+f[j^][Depth[j]-];
ans=min(ans,now);
}
printf("%lld\n",ans);
}
BZOJ4446:[SCOI2015]小凸玩密室(树形DP)的更多相关文章
- [BZOJ4446]SCoi2015 小凸玩密室 树形DP(烧脑高能预警)
4446: [Scoi2015]小凸玩密室 Time Limit: 10 Sec Memory Limit: 128 MB Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点 ...
- LUOGU P4253 [SCOI2015]小凸玩密室(树形dp)
传送门 解题思路 玄学树形\(dp\),题目描述极其混乱...看错了两次题,设首先根据每次必须点完子树里的灯才能点别的,那么点灯情况只有两种,第一种是点到某一个祖先,第二种是点到某一个祖先的兄弟.所以 ...
- BZOJ.4446.[SCOI2015]小凸玩密室(树形DP)
BZOJ LOJ 洛谷 (下面点亮一个灯泡就说成染色了,感觉染色比较顺口... 注意完全二叉树\(\neq\)满二叉树,点亮第一个灯泡\(\neq\)第一次点亮一号灯泡,根节点应该就是\(1\)... ...
- BZOJ4446 [Scoi2015]小凸玩密室 【树形Dp】
题目 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯 泡即可逃出密室.每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要花费,之后每点亮4 ...
- 2019.03.26 bzoj4446: [Scoi2015]小凸玩密室(树形dp)
传送门 题意简述: 给一棵完全二叉树,有点权aia_iai和边权,每个点有一盏灯,现在要按一定要求点亮: 任意时刻点亮的灯泡必须连通 点亮一个灯泡后必须先点亮其子树 费用计算如下:点第一盏灯不要花费 ...
- BZOJ4446 SCOI2015小凸玩密室(树形dp)
设f[i][j]为由根进入遍历完i子树,最后一个到达的点是j时的最小代价,g[i][j]为由子树内任意一点开始遍历完i子树,最后一个到达的点是j时的最小代价,因为是一棵完全二叉树,状态数量是nlogn ...
- BZOJ4446: [Scoi2015]小凸玩密室
用ui,j表示走完i的子树后走到i的深度为j的祖先的兄弟的最小代价: 用vi,j表示走完i的子树后走到i的深度为j的祖先的最小代价,用u算出v. 枚举起点,计算答案. #include<bits ...
- [bzoj4446] [loj#2009] [Scoi2015] 小凸玩密室
Description 小凸和小方相约玩密室逃脱,这个密室是一棵有 \(n\) 个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯泡即可逃出密室.每个灯泡有个权值 \(Ai\) ,每条边也有个权值 \ ...
- bzoj 4446: [Scoi2015]小凸玩密室
Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯 泡即可逃出密室.每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要 ...
随机推荐
- Winform截图小程序
今天闲时做的一个Demo,做得并不好,只是实现了最基本的截图功能 主要的思路就是 先打开一个主窗体,点击"截图按钮" 会出现一个半透明的小窗体(可以拉伸放大缩小) 然后利用Grap ...
- django分页的两种方式
第一种自定义分页: def pageDemo(request): ''' 自定义分页] :param request: :return: ''' currentpage=request.GET.get ...
- 获取java根目录,加载根目录下的文件
就两句代码 String filepath = System.getProperty("user.dir")+"/a.xlsx"; File file=new ...
- Django,ajax实现表格增删查改,Django内置分页功能。
1.工程目录 2.urls.py """Django_ajax URL Configuration The `urlpatterns` list routes URLs ...
- 20个网页设计师应该学习的CSS3经典教程实例
CSS3技术离我们越近,我们也应该学习一些简单的CSS3技术了,而学习最基本的方法就是模仿,以及观看大师作品的案例.收集了20个基础教程,均是涉及到css3应用范围,值得你和我一起共同学习. Smoo ...
- VMware虚拟机上配置CentOS联网
转自https://www.cnblogs.com/cindy-cindy/p/6784536.html 1.首先保证虚拟机的网络适配器为NAT模式 2.设置虚拟机的“编辑”-->“虚拟网络编辑 ...
- latex 图形的放置
Next: 16.3 清除未处理的浮动图形 Up: 16. 浮动图形环境 Previous: 16.1 创建浮动图形 16.2 图形的放置 图形(figure)环境有一个可选参数项允许用户 ...
- PHP匿名函数(闭包)
匿名函数(Anonymous functions),也叫闭包函数(closures),允许 临时创建一个没有指定名称的函数.最经常用作回调函数(callback)参数的值.当然,也有其它应用的情况. ...
- Jarvis OJ-Reverse题目Writeup
做一道更一道吧233333 DD-Android Easy 下载apk,先安装一下试试吧…… 猜测是输入正确的内容后给flag吧 将后缀改成zip,解压,用dex2jar处理classes.dex,然 ...
- 搭建高可用mongodb集群(三)—— 深入副本集内部机制
在上一篇文章<搭建高可用mongodb集群(二)-- 副本集> 介绍了副本集的配置,这篇文章深入研究一下副本集的内部机制.还是带着副本集的问题来看吧! 副本集故障转移,主节点是如何选举的? ...