N次剩余

给定 \(N,a,P\),且 \(P\) 最好为质数
可以算出 \(x^N\equiv a(mod~p)\) 的解
首先可以算出 \(P\) 的原根 \(g\)
解方程 \(g^y\equiv b(mod~p)\),这个直接 \(BSGS\)
设 \(g^z\equiv x(mod~p)\)
那么 \(g^{za}=g^y(mod~p)\iff za\equiv y(mod~\varphi(p))\),这个直接 \(exgcd\)
无解在 \(BSGS\) 和 \(exgcd\) 的时候判掉,最后快速幂得到答案

二次剩余

求 \(x^2\equiv n(mod~p)\)的一个解 \(x\),其中 \(p\) 为一个奇素数

有二次剩余的条件

\[n^{\frac{p-1}{2}} \equiv 1(mod~p)\]

证明

首先有 \(n^{p-1}\equiv 1(mod~p)\)
若存在一个解 \(a\),那么 \(a^{p-1}\equiv 1(mod~p)\) 且 \(a^{2}\equiv n(mod~p)\)
所以
\[a^{p-1}\equiv n^{\frac{p-1}{2}}\equiv 1(mod~p)\]

算法一

如果 \(g\) 为 \(p\) 的原根,且 \(g^{a}\equiv n(mod~p)\) 那么解就是 \(g^{\frac{a}{2}}\)

证明

结合上面的条件,有 \(g^{a\frac{p-1}{2}}\equiv 1(mod~p)\)
因为 \(g^{p-1}\equiv 1(mod~p)\),那么 \(a\) 一定为偶数
可以在 \(\Theta(\sqrt{p})\) 的复杂度内找到解

算法二

随机一个数字 \(a\)
使得 \(a^2-n\) 不存在二次剩余,期望次数为 \(2\)
定义一个新的数域,设 \(\omega = \sqrt{a^2-n}\) (类似于 \(i=\sqrt{-1}\))
那么所有的数都可以表示为 \(a+b\omega\) 的形式
根据有解的条件可以得到
\[\omega^{p-1}\ne 1(mod~p)\]
而 \(\omega^{2(p-1)}\equiv 1(mod~p)\) 所以 \(\omega^{p-1}\equiv -1(mod~p)\)

定理 \((a+\omega)^{p}=a-\omega\)

证明

二项式定理展开得到 \(\sum_{i=0}^{p}\binom{p}{i}a^i\omega^{p-i}\)
显然除了第 \(0\) 项和第 \(p\) 项的组合数不是 \(p\) 的倍数
那么就是 \(a^p+\omega^{p}\)
由于 \(a^{p-1}\equiv 1(mod~p)\) 且 \(\omega^{p-1}\equiv -1(mod~p)\)
那么得到 \(a^p+\omega^{p}=a-\omega\)

这就好了,因为 \((a-\omega)(a+\omega)=a^2-\omega^2=n\)
所以 \((a+\omega)^{\frac{p+1}{2}}\equiv \sqrt{n}(mod~p)\)
现在只要证明 \((a+\omega)^{\frac{p+1}{2}}\) 不存在 \(\omega\) 项就好了
假设 \((a+\omega)^{\frac{p+1}{2}}=x+y\omega\)
那么 \((x+y\omega)^2=n\)
所以 \(x=0\) 或者 \(y=0\)
如果 \(x=0\) 且 \(y\ne0\),那么 \((x+y\omega)^2=y^2(a^2-n)=n\)
因为 \(a^2-n\) 没有二次剩余,而 \(y^2\) 显然有二次剩余
所以 \(n\) 没有二次剩余,矛盾
得到 \(y= 0\)

总结一下

第一步随机一个 \(a\),使得\(a^2-n\) 不存在二次剩余
第二步直接重载运算求出 \((a+\omega)^{\frac{p+1}{2}}\) 即 \(n\) 的二次剩余

N次剩余和二次剩余的更多相关文章

  1. OI数学汇总

    最前面:\(\LaTeX\)可能需要加载一会,请耐心等待o~ 前言 数学在\(\text{OI}\)中十分重要.其中大多都是数论. 什么是数论? \[ 研究整数的理论 --zzq \] 本文包含所有侧 ...

  2. 数学:二次剩余与n次剩余

    二次剩余求的是这个东西 如果给定x,再给定若干个大的质数p,如果结果a相同,那么x是完全平方数? 给出别人的二次剩余的代码: /*poj 1808 题意: 判断平方剩余,即判断(x^2)%p=a是否有 ...

  3. 二次剩余、三次剩余、k次剩余

    今天研究了一下这块内容...首先是板子 #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  4. android计算每个目录剩余空间丶总空间以及SD卡剩余空间

    ublic class MemorySpaceCheck { /** * 计算剩余空间 * @param path * @return */ public static String getAvail ...

  5. Windows - 性能监控之磁盘剩余空间大小警报

    开始 -> 运行 -> 键入命令 perfmon.msc 数据收集器(Data Collector Sets) -> 用户自定义(User Defined)

  6. SQL Server自动化运维系列——监控磁盘剩余空间及SQL Server错误日志(Power Shell)

    需求描述 在我们的生产环境中,大部分情况下需要有自己的运维体制,包括自己健康状态的检测等.如果发生异常,需要提前预警的,通知形式一般为发邮件告知. 在所有的自检流程中最基础的一个就是磁盘剩余空间检测. ...

  7. css实现div的高度填满剩余空间

    css实现div的高度填满剩余空间 .top{ width: 100%; height: 70px;} .bottom{background-color: #cc85d9;width: 100%;po ...

  8. 如何实现textarea中获取动态剩余字数的实现

    工作中遇到一个案例,之前没有写过,今儿啃了半个下午硬是给写出来,灰常又成就感!当然对于js大牛来说这根本不算啥,但是对于我自己的js能力又向前迈出一小步. 案例介绍:我们常见到有的网站有textare ...

  9. sql 查询服务器硬盘剩余空间

    DECLARE @tb1 Table( drive varchar(20), [MB 可用空间] varchar(20)) INSERT INTO @tb1 Exec master.dbo.xp_fi ...

随机推荐

  1. python:利用smtplib模块发送邮件详解

    自动化测试中,测试报告一般都需要发送给相关的人员,比较有效的一个方法是每次执行完测试用例后,将测试报告(HTML.截图.附件)通过邮件方式发送. 首先我们要做: 进入163邮箱,点击设置中的pop3/ ...

  2. SYN 洪泛攻击

    在 TCP 三次握手中,服务器为了响应一个收到的 SYN,分配并初始化连接变量和缓存.然后服务器发送一个 SYNACK 进行相应,并等待来自客户的 ACK 报文段. 如果某客户不发送 ACK 来完成三 ...

  3. day 28 :进程相关,进程池,锁,队列,生产者消费者模式

    ---恢复内容开始--- 前情提要: 一:进程Process  1:模块介绍 from multiprocessing import Process from multiprocessing impo ...

  4. 丢用lamp手动安装apache php mysql

    Centos7环境下. 使用lamp环境无法正常显示出thinkphp站点的内容,一气之下,选择手动安装 第一步: 安装apache  php 和php连接数据库的工具php-mysql [root@ ...

  5. JS使用Crypto实现AES/ECS/zero-padding加密

    首先说一句,no-padding和zero-padding是一样的.他们指的是不够16位的情况补0至16位. 天知道网上为什么会出现两种叫法. 另附两个有用的网址 http://tool.chacuo ...

  6. Python 全栈开发:str(字符串)索引和切片

    str(字符串)索引和切片 str(字符串)索引: #计算机中大部分索引以0为开始 s = 'mylovepython' s1 = s[0] s2 = s[4] s3 = s[-1] print(s1 ...

  7. Java集合类中的Iterator和ListIterator的区别

    注意:内容来自网络他人文章! 最近看到集合类,知道凡是实现了Collection接口的集合类,都有一个Iterator方法,用于返回一个实现了Iterator接口的对象,用于遍历集合:(Iterato ...

  8. 【Vim】Vim学习

    1. 三种模式 (1)命令模式:刚启动vim便进入命令模式,此时敲击键盘会被当做命令来处理 以下是常用的几个命令: i 切换到插入模式,以输入字符.x 删除当前光标所在处的字符.: 切换到底线命令模式 ...

  9. javascript语言使用技巧及注意事项总结

    1.首次为变量赋值时务必使用var关键字 变量没有声明而直接赋值得话,默认会作为一个新的全局变量,要尽量避免使用全局变量. var a=b=10;//其中a是局部变量,b是全局变量 2.使用===比= ...

  10. Android多媒体技术之音频播放

    1.Android中音频播放的方式和区别. MediaPlayer:主要用于播放音频,可以播放视频,但是一般不用其进行视频播放. SoundPool:主要用于播放一些短促的声音片段,主要优势是cpu资 ...