Prime Test
Time Limit: 6000MS   Memory Limit: 65536K
Total Submissions: 27129   Accepted: 6713
Case Time Limit: 4000MS

Description

Given a big integer number, you are required to find out whether it's a prime number.

Input

The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N < 254).

Output

For each test case, if N is a prime number, output a line containing the word "Prime", otherwise, output a line containing the smallest prime factor of N.

Sample Input

2
5
10

Sample Output

Prime
2

Source

 
 
 
 
 /*
给你一个大数,如果是素数输出prime,如果不是,则输出其最小的质因子。 利用Miller-Rabbin素数测试和Pollar-rho因数分解可以AC这道题 */ #include<iostream>
#include<cstdio>
#include<string.h>
#include<time.h>
#include<algorithm>
using namespace std; typedef __int64 LL;
//****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=;//随机算法判定次数,S越大,判错概率越小 LL mult_mod(LL a,LL b,LL mod) //(a*b)%c a,b,c<2^63
{
a%=mod;
b%=mod;
LL ans=;
while(b)
{
if(b&)
{
ans=ans+a;
if(ans>=mod)
ans=ans-mod;
}
a=a<<;
if(a>=mod) a=a-mod;
b=b>>;
}
return ans;
} LL pow_mod(LL a,LL b,LL mod) // a^b%mod
{
LL ans=;
a=a%mod;
while(b)
{
if(b&)
{
ans=mult_mod(ans,a,mod);
}
a=mult_mod(a,a,mod);
b=b>>;
}
return ans;
} //以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false bool check(LL a,LL n,LL x,LL t)
{
LL ret=pow_mod(a,x,n);
LL last=ret;
for(int i=;i<=t;i++)
{
ret=mult_mod(ret,ret,n);
if(ret== && last!= && last!=n-) return true;//合数
last=ret;
}
if(ret!=) return true;
else return false;
} // Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false; bool Miller_Rabin(long long n)
{
if(n<)return false;
if(n==) return true;
if( (n&)==) return false;//偶数
LL x=n-;
LL t=;
while( (x&)== ) { x>>=;t++;}
for(int i=;i<S;i++)
{
LL a=rand()%(n-)+;//rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
} //************************************************
//pollard_rho 算法进行质因数分解
//************************************************ LL factor[];//质因数分解结果(刚返回时是无序的)
int tol;////质因数的个数。数组小标从0开始 LL gcd(LL a,LL b)
{
if(a==) return ;// !!!!
if(a<) return gcd(-a,b);
while(b)
{
LL t=a%b;
a=b;
b=t;
}
return a;
} LL Pollard_rho(LL x,LL c)
{
LL i=,k=;
LL x0=rand()%x;
LL y=x0;
while()
{
i++;
x0=(mult_mod(x0,x0,x)+c)%x;
LL d=gcd(y-x0,x);
if(d!= && d!=x) return d;
if(y==x0) return x;
if(i==k) {y=x0;k+=k;}
}
} //对n进行素因子分解 void findfac(LL n)
{
if(Miller_Rabin(n))
{
factor[tol++]=n;
return;
}
LL p=n;
while(p>=n)
p=Pollard_rho(p,rand()%(n-)+);
findfac(p);
findfac(n/p);
} int main()
{
// srand(time(NULL));//需要time.h头文件 //POJ上G++要去掉这句话
int T;
LL n;
scanf("%d",&T);
while(T--)
{
scanf("%I64d",&n);
if(Miller_Rabin(n))
{
printf("Prime\n");
continue;
}
tol=;
findfac(n);// 对n的素数分解
LL ans=factor[];
for(int i=;i<tol;i++)
if(factor[i]<ans)
ans=factor[i];
printf("%I64d\n",ans); for(int i=;i<tol;i++)
printf("%I64d ",factor[i]);
printf("\n");
}
return ;
}

poj 1811 Prime Test 大数素数测试+大数因子分解的更多相关文章

  1. POJ 3126 Prime Path(素数路径)

    POJ 3126 Prime Path(素数路径) Time Limit: 1000MS    Memory Limit: 65536K Description - 题目描述 The minister ...

  2. Miller_rabin算法+Pollard_rho算法 POJ 1811 Prime Test

    POJ 1811 Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 32534   Accepted: 8 ...

  3. 数论 - Miller_Rabin素数测试 + pollard_rho算法分解质因数 ---- poj 1811 : Prime Test

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 29046   Accepted: 7342 Case ...

  4. POJ 1811 Prime Test (Rabin-Miller强伪素数测试 和Pollard-rho 因数分解)

    题目链接 Description Given a big integer number, you are required to find out whether it's a prime numbe ...

  5. poj 3126 Prime Path( bfs + 素数)

    题目:http://poj.org/problem?id=3126 题意:给定两个四位数,求从前一个数变到后一个数最少需要几步,改变的原则是每次只能改变某一位上的一个数,而且每次改变得到的必须是一个素 ...

  6. POJ 1811 Prime Test( Pollard-rho整数分解经典题 )

    链接:传送门 题意:输入 n ,判断 n 是否为素数,如果是合数输出 n 的最素因子 思路:Pollard-rho经典题 /************************************** ...

  7. POJ Pseudoprime numbers( Miller-Rabin素数测试 )

    链接:传送门 题意:题目给出费马小定理:Fermat's theorem states that for any prime number p and for any integer a > 1 ...

  8. POJ 1811 Prime Test(Miller-Rabin & Pollard-rho素数测试)

    Description Given a big integer number, you are required to find out whether it's a prime number. In ...

  9. POJ 1811 Prime Test 素性测试 分解素因子

    题意: 给你一个数n(n <= 2^54),判断n是不是素数,如果是输出Prime,否则输出n最小的素因子 解题思路: 自然数素性测试可以看看Matrix67的  素数与素性测试 素因子分解利用 ...

随机推荐

  1. Android跳转淘宝、京东APP商品详情页

    import Android.content.Intent; import android.content.pm.PackageManager; import android.net.Uri; imp ...

  2. QuantLib 金融计算——收益率曲线之构建曲线(1)

    目录 QuantLib 金融计算--收益率曲线之构建曲线(1) YieldTermStructure DiscountCurve DiscountCurve 对象的构造 ZeroCurve ZeroC ...

  3. 我也学习JAVA多线程-join

    在工作中,挺少遇到join关键字,但很多多线程资料和面试过程中,初中级开发工程师总会遇到join. 今天一起学习下join. join的作用:等待指定的时间(当为0时,一直等待),直到这个线程执行结束 ...

  4. Wi-Fi科普讲稿

    Wi-Fi 从入门到?? 组员:deleted 什么是Wi-Fi Wi-Fi 在中文里又称作"无线热点",是Wi-Fi联盟制造商的商标做为产品的品牌认证,是一个创建于IEEE 80 ...

  5. Vue.js 动态挂载子组件

    直接来实例 父组件 <template> <div> <div :is="sub.content" :ref="sub.name" ...

  6. 单独安装VS2012装mono for android

    直接安装个SQL Server2012,然后就可以单独安装VS2012 来用mono for android了.如果不想装,那就装以下这些东西. 广州-PC286() 11:05:28 和 x86  ...

  7. C# 文件读写系列二

    读取文件原则上非常简单,但它不是通过FileInfo和DirectoryInfo来完成的,关于FileInfo和DirectoryInfo请参考C# 文件操作系列一,在.Net Framework4. ...

  8. redis 数据类型 Hash

    Redis 数据类型Hash:hash数据类型存储的数据和mysql数据库中存储的一条记录很类似. hash的一些操作: 比如数据库是user表,有id,name,age ,sex,可以建立与之对应的 ...

  9. $scope作用域与依赖注入

    一.$scope与$rootscope作用域 $scope下的数据作为该控制器下的数据moduel,只有在该控制器下才能够访问:而$rootScope则可以可以再任何有效的地方访问到,这个有效的地方指 ...

  10. 一头扎进Spring之---------Spring七大核心模块

    Spring七大核心模块 核心容器(Spring Core) 核心容器提供Spring框架的基本功能.Spring以bean的方式组织和管理Java应用中的各个组件及其关系.Spring使用BeanF ...