3239: Discrete Logging

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 635  Solved: 413
[Submit][Status][Discuss]

Description

Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 2 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that

    BL = N (mod P)

Input

Read several lines of input, each containing P,B,N separated by a space,

Output

for each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".

The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states

  B(P-1)= 1 (mod P)

for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m

  B(-m) = B(P-1-m)(mod P)

Sample Input

5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111

Sample Output

0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587

题目链接:

    http://www.lydsy.com/JudgeOnline/problem.php?id=3239

Solution

    BSGS的模板题。。。。

    对于本题的做法。。一般是先设 L = i * e + j 或 L = i * e - j 。。。

    e = ceil(sqrt(P))。。就是假如算出 sqrt(P)= 1.14 ,e就等于2,往大的取整

    然后枚举 i 和 j 的值就能做到 O(sqrt(P))。。。

代码

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<map>
#define LL long long
using namespace std; LL P,B,N,e,now;
map<LL,int>mp;
LL pow(LL p,LL q){
LL s=1;
while(q){
if(q&1) s=s*p%P;
q>>=1;
p=p*p%P;
}
return s;
}
void solve(){
mp.clear();
if(N==1 && B>0){
printf("0\n");
return;
}
if( (!B) && (!N) ){printf("1\n");return;}
if(!B){printf("no solution\n");return;}
e=ceil(sqrt(P));
now=N%P;
for(int j=1;j<=e;j++){
now=now*B%P;
if(!mp[now]) mp[now]=j;
}
B=pow(B,e);
now=1;
for(int i=1;i<=e;i++){
now=now*B%P;
if(mp[now]>0){
N=e*i-mp[now];
printf("%lld\n",N);
return;
}
}
printf("no solution\n");
return;
}
int main(){
while(scanf("%lld%lld%lld",&P,&B,&N)!=EOF) solve();
return 0;
}

  

  

This passage is made by Iscream-2001.

BZOJ 3239--Discrete Logging(BSGS)的更多相关文章

  1. BSGS 扩展大步小步法解决离散对数问题 (BZOJ 3239: Discrete Logging// 2480: Spoj3105 Mod)

    我先转为敬? orz% miskcoo 贴板子 BZOJ 3239: Discrete Logging//2480: Spoj3105 Mod(两道题输入不同,我这里只贴了3239的代码) CODE ...

  2. BZOJ 3239 Discrete Logging(BSGS)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3239 [题目大意] 计算满足 Y^x ≡ Z ( mod P) 的最小非负整数 [题解 ...

  3. bzoj 3239: Discrete Logging && 2480: Spoj3105 Mod【BSGS】

    都是BSGS的板子题 此时 \( 0 \leq x \leq p-1 \) 设 \( m=\left \lceil \sqrt{p} \right \rceil ,x=i*m-j \)这里-的作用是避 ...

  4. BZOJ 3239: Discrete Logging [BGSG]

    裸题 求\(ind_{n,a}b\),也就是\(a^x \equiv b \pmod n\) 注意这里开根不能直接下取整 这个题少了一些特判也可以过... #include <iostream& ...

  5. 【BZOJ3239】Discrete Logging BSGS

    [BZOJ3239]Discrete Logging Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B ...

  6. 【BZOJ】3239: Discrete Logging

    http://www.lydsy.com/JudgeOnline/problem.php?id=3239 题意:原题很清楚了= = #include <bits/stdc++.h> usi ...

  7. bzoj 3239 poj 2417 BSGS

    BSGS算法,预处理出ϕ(c)−−−−√内的a的幂,每次再一块一块的往上找,转移时将b乘上逆元,哈希表里O(1)查询即可 #include<cstdio> #include<cstr ...

  8. POJ 2417 Discrete Logging BSGS

    http://poj.org/problem?id=2417 BSGS 大步小步法( baby step giant step ) sqrt( p )的复杂度求出 ( a^x ) % p = b % ...

  9. poj2417 Discrete Logging BSGS裸题

    给a^x == b (mod c)求满足的最小正整数x, 用BSGS求,令m=ceil(sqrt(m)),x=im-j,那么a^(im)=ba^j%p;, 我们先枚举j求出所有的ba^j%p,1< ...

  10. 【BSGS】BZOJ3239 Discrete Logging

    3239: Discrete Logging Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 729  Solved: 485[Submit][Statu ...

随机推荐

  1. MVC表单提交写法1

    初学MVC,感觉跟以前的aspx页面差别很大,我们就先来看看MVC的表单是怎么提交的吧. 现在我们用一个最简单的例子来看一看MVC是怎么提交表单的(这一个例子中,我们的关注点是如何提交表单,所以不涉及 ...

  2. 在cmd中显示mysql -uroot-proot 不是命令

    这个代码的意思是打开mysql,用户名为root,密码也是root 解决办法:方法一:首先要进入mysql的bin目录下,再执行. 密码错了,重新输入密码,没有密码嘛

  3. mysql查询大于X分钟数

    select * from table where   date_add(STR_TO_DATE(createtime,'%Y-%m-%d %T:%i:%s'), interval '00:60:00 ...

  4. Windows10远程桌面连接配置

    被控电脑在TP-Link路由器 1.基本设置 被控端电脑设置:1)被控端的电脑系统需要是Windows专业版或者企业版,家庭中文版的系统是不支持远程访问功能的: 2)被控端打开远程桌面功能,在系统的设 ...

  5. [SoapUI]怎样获取上一个Test Step的名字

    def currentStepInd = context.currentStepIndex def previousStep = testRunner.testCase.getTestStepAt(c ...

  6. linux每天一小步---rm命令详解

    1 命令功能 rm命令用于删除文件或者目录,值得注意的是linux下的删除不弯曲等同于windows系统下的删除操作,linux系统下一旦删除了文件或者目录那么它将消失,而windows系统下我们还可 ...

  7. 两段 PHP 代码比较优劣

    // 代码一 public function getPCA($level = false) { $results = array(); $where = $level ? " where f ...

  8. 升级windows 10后网络连接异常

    升级 windows 10,QQ无法连接,显示“登陆超时,请检查网络或者防火墙设置”.打开360软件助手,准备升级QQ试试,360软件助手也显示网络异常. 解决方法: 右键点击开始菜单,命令提示符(管 ...

  9. XML--将XML中数据提取出转换成表2

    DECLARE @xml XMLSET @xml = '<Students>    <Student  id="1001" name = "xu&quo ...

  10. hadoop 2.7.3伪分布式安装

    hadoop 2.7.3伪分布式安装 hadoop集群的伪分布式部署由于只需要一台服务器,在测试,开发过程中还是很方便实用的,有必要将搭建伪分布式的过程记录下来,好记性不如烂笔头. hadoop 2. ...