python Queue在两个地方
- 其一:
Source code: Lib/queue.py
The queue module implements multi-producer, multi-consumer queues. It is especially useful in threaded programming when information must be exchanged safely between multiple threads. The Queue class in this module implements all the required locking semantics. It depends on the availability of thread support in Python; see the threading module.
The module implements three types of queue, which differ only in the order in which the entries are retrieved. In a FIFO queue, the first tasks added are the first retrieved. In a LIFO queue, the most recently added entry is the first retrieved (operating like a stack). With a priority queue, the entries are kept sorted (using the heapq module) and the lowest valued entry is retrieved first.
The queue module defines the following classes and exceptions:
- class queue.Queue(maxsize=0)
-
Constructor for a FIFO queue. maxsize is an integer that sets the upperbound limit on the number of items that can be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed. If maxsize is less than or equal to zero, the queue size is infinite.
Queue objects (Queue, LifoQueue, or PriorityQueue) provide the public methods described below.
- Queue.qsize()
-
Return the approximate size of the queue. Note, qsize() > 0 doesn’t guarantee that a subsequent get() will not block, nor will qsize() < maxsize guarantee that put() will not block.
- Queue.empty()
-
Return True if the queue is empty, False otherwise. If empty() returns True it doesn’t guarantee that a subsequent call to put() will not block. Similarly, if empty() returns False it doesn’t guarantee that a subsequent call to get() will not block.
- Queue.full()
-
Return True if the queue is full, False otherwise. If full() returns True it doesn’t guarantee that a subsequent call to get() will not block. Similarly, if full() returns False it doesn’t guarantee that a subsequent call to put() will not block.
- Queue.put(item, block=True, timeout=None)
-
Put item into the queue. If optional args block is true and timeout is None (the default), block if necessary until a free slot is available. If timeout is a positive number, it blocks at most timeout seconds and raises the Full exception if no free slot was available within that time. Otherwise (block is false), put an item on the queue if a free slot is immediately available, else raise the Full exception (timeout is ignored in that case).
- Queue.put_nowait(item)
-
Equivalent to put(item, False).
- Queue.get(block=True, timeout=None)
-
Remove and return an item from the queue. If optional args block is true and timeout is None (the default), block if necessary until an item is available. If timeout is a positive number, it blocks at most timeout seconds and raises the Empty exception if no item was available within that time. Otherwise (block is false), return an item if one is immediately available, else raise the Empty exception (timeout is ignored in that case).
- Queue.get_nowait()
-
Equivalent to get(False).
Two methods are offered to support tracking whether enqueued tasks have been fully processed by daemon consumer threads.
- Queue.task_done()
-
Indicate that a formerly enqueued task is complete. Used by queue consumer threads. For each get() used to fetch a task, a subsequent call to task_done() tells the queue that the processing on the task is complete.
If a join() is currently blocking, it will resume when all items have been processed (meaning that a task_done() call was received for every item that had been put() into the queue).
Raises a ValueError if called more times than there were items placed in the queue.
- Queue.join()
-
Blocks until all items in the queue have been gotten and processed.
The count of unfinished tasks goes up whenever an item is added to the queue. The count goes down whenever a consumer thread calls task_done() to indicate that the item was retrieved and all work on it is complete. When the count of unfinished tasks drops to zero, join() unblocks.
Example of how to wait for enqueued tasks to be completed:
def worker():
while True:
item = q.get()
do_work(item)
q.task_done() q = Queue()
for i in range(num_worker_threads):
t = Thread(target=worker)
t.daemon = True
t.start() for item in source():
q.put(item) q.join() # block until all tasks are done
- 其二:
- class multiprocessing.Queue([maxsize])
-
Returns a process shared queue implemented using a pipe and a few locks/semaphores. When a process first puts an item on the queue a feeder thread is started which transfers objects from a buffer into the pipe.
The usual queue.Empty and queue.Full exceptions from the standard library’s queue module are raised to signal timeouts.
Queue implements all the methods of queue.Queue except for task_done() and join().
- qsize()
-
Return the approximate size of the queue. Because of multithreading/multiprocessing semantics, this number is not reliable.
Note that this may raise NotImplementedError on Unix platforms like Mac OS X where sem_getvalue() is not implemented.
- empty()
-
Return True if the queue is empty, False otherwise. Because of multithreading/multiprocessing semantics, this is not reliable.
- full()
-
Return True if the queue is full, False otherwise. Because of multithreading/multiprocessing semantics, this is not reliable.
- put(obj[, block[, timeout]])
-
Put obj into the queue. If the optional argument block is True (the default) and timeout is None (the default), block if necessary until a free slot is available. If timeout is a positive number, it blocks at most timeout seconds and raises the queue.Full exception if no free slot was available within that time. Otherwise (block is False), put an item on the queue if a free slot is immediately available, else raise the queue.Full exception (timeout is ignored in that case).
- put_nowait(obj)
-
Equivalent to put(obj, False).
- get([block[, timeout]])
-
Remove and return an item from the queue. If optional args block is True (the default) and timeout is None (the default), block if necessary until an item is available. If timeout is a positive number, it blocks at most timeout seconds and raises the queue.Empty exception if no item was available within that time. Otherwise (block is False), return an item if one is immediately available, else raise the queue.Empty exception (timeout is ignored in that case).
- get_nowait()
-
Equivalent to get(False).
multiprocessing.Queue has a few additional methods not found in queue.Queue. These methods are usually unnecessary for most code:
- close()
-
Indicate that no more data will be put on this queue by the current process. The background thread will quit once it has flushed all buffered data to the pipe. This is called automatically when the queue is garbage collected.
- join_thread()
-
Join the background thread. This can only be used after close() has been called. It blocks until the background thread exits, ensuring that all data in the buffer has been flushed to the pipe.
By default if a process is not the creator of the queue then on exit it will attempt to join the queue’s background thread. The process can call cancel_join_thread() to make join_thread() do nothing.
- cancel_join_thread()
-
Prevent join_thread() from blocking. In particular, this prevents the background thread from being joined automatically when the process exits – see join_thread().
A better name for this method might be allow_exit_without_flush(). It is likely to cause enqueued data to lost, and you almost certainly will not need to use it. It is really only there if you need the current process to exit immediately without waiting to flush enqueued data to the underlying pipe, and you don’t care about lost data.
python Queue在两个地方的更多相关文章
- Python -- queue队列模块
一 简单使用 --内置模块哦 import Queuemyqueue = Queue.Queue(maxsize = 10) Queue.Queue类即是一个队列的同步实现.队列长度可为无限或者有限. ...
- Python Queue实现生产与消费
Python Queue模块详解 from:https://blog.linuxeye.com/334.html Python中,队列是线程间最常用的交换数据的形式.Queue模块是提供队列操作的模块 ...
- python --- queue模块使用
1. 什么是队列? 学过数据结构的人都知道,如果不知道队列,请Google(或百度). 2. 在python中什么是多生产者,多消费模型? 简单来说,就是一边生产(多个生产者),一边消费(多个消费者) ...
- python Queue模块
先看一个很简单的例子 #coding:utf8 import Queue #queue是队列的意思 q=Queue.Queue(maxsize=10) #创建一个queue对象 for i in ra ...
- 有两个地方,用到了javabean对象和属性字符串值之间的转换
1.有两个地方,用到了javabean对象和属性字符串值之间的转换 2.一个是接入层spring mvc,将json字符串参数转换为javaBean.通过@RequestBody javaBean方式 ...
- 基础知识:编程语言介绍、Python介绍、Python解释器安装、运行Python解释器的两种方式、变量、数据类型基本使用
2018年3月19日 今日学习内容: 1.编程语言的介绍 2.Python介绍 3.安装Python解释器(多版本共存) 4.运行Python解释器程序两种方式.(交互式与命令行式)(♥♥♥♥♥) 5 ...
- 周一02.3运行python程序的两种方式
一.运行python程序的两种方式 方法一:交互式: 优点:输入一行代码立刻返回结果 缺点:无法永久保存代码 方法二: ...
- 执行python解释器的两种方式
执行python解释器的两种方式 1.交互式 python是高级语言,是解释型语言,逐行翻译,写一句翻译一句 print ('hello world') 2.命令行式 python和python解释器 ...
- 比较python类的两个instance(对象) 是否相等
http://www.yihaomen.com/article/python/281.htm 比较python类的两个instance(对象) 是否相等 作者:轻舞肥羊 日期:2012-10-25 字 ...
随机推荐
- 搭建jdk环境
jdk(java develop toolkit)主要包括:编译程序的javac,运行程序的java,javaAPI类库. 主要步骤: 下载jdk安装包 设置环境变量(JAVA_HOME,Path,C ...
- DataGridView 隔行显示不同的颜色
两种方法 第一种 DataGridview1.Rows[i].DefultCellStyle.backcolor 第二种 AlternatingRowsDefutCellstyle 属性 获取或设置应 ...
- Toolstrip 工具栏控件
工具栏是另一种获取应用程序主要功能的常用方法,比起菜单更直观. Tool strip 控件是由system.Windows.forms.Toolstrip类提供的,作用是创建易于自定义的常用工具栏 ...
- node错误集合
1.端口被占用 node .\app.js events.js:167 throw er; // Unhandled 'error' even 解决办法:8888端口被占用了,更改一个端口就好 2. ...
- win10下设置IIS、安装php7.2
开启IIS及相关功能: 控制面板——程序和功能——启用或关闭Windows功能——勾选Internet Information Service——万维网服务——性能和功能——勾选CGI 开启成功后在 ...
- 【原】Java跨域以及实现原理
前言:最近研究了一下跨域,主要是jsonp的实现,经过测试后总结如下: 一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面.动态网页.web服务.WCF,只要是跨 ...
- groovy闭包科里化参数
科里化闭包:带有预先绑定形参的闭包.在预先绑定一个形参之后,调用闭包时就不必为这个形参提供实参了.有助于去掉方法调用中的冗余重复. 使用curry方法科里化任意多个参数 使用rcurry方法科里化后面 ...
- LeetCode GrayCode
class Solution { public: vector<int> grayCode(int n) { vector<int> res; res.push_back(); ...
- python_Django 实现登入功能form表单的参数接收处理
1.创建Django工程. 参考https://www.cnblogs.com/CK85/p/10159159.html中步骤. 2.在urls.py文件中添加url分发路径 "" ...
- 旋转/非旋转treap的简单操作
treap(树堆) 是在二叉搜索树的基础上,通过维护随机附加域,使其满足堆性质,从而使树相对平衡的二叉树: 为什么可以这样呢? 因为在维护堆的时候可以同时保证搜索树的性质: (比如当一棵树的一个域满足 ...