51nod1965. 奇怪的式子(min_25筛)
题目链接
http://www.51nod.com/Challenge/Problem.html#!#problemId=1965
题解
需要求的式子显然是个二合一形式,我们将其拆开,分别计算 \(\prod_\limits{i = 1}^n \sigma_0(i)^i\) 与 \(\prod_\limits{i = 1}^n \sigma_0(i)^{\mu(i)}\),再将两部分乘起来得到答案。
对于第一部分 \(\prod_\limits{i = 1}^n \sigma_0(i)^i\):
由于若 \(x\) 的唯一分解式为 \(p_1^{\alpha_1}p_2^{\alpha_2} \cdots p_k^{\alpha_k}\),那么有 \(\sigma_0(x) = \prod_{i = 1}^k (\alpha_i + 1)\),因此我们可以考虑求每一个质数的贡献。令 \(P\) 表示质数集合,不难得到:
\]
其中的 \(w\) 即为所有唯一分解式中包含 \(p^k\) 的数的和,做个简单容斥可以得到 \(w = p^k \cdot s(\left\lfloor\frac{n}{p^k}\right\rfloor) - p^{k + 1} \cdot s(\left\lfloor\frac{n}{p^{k + 1}}\right\rfloor)\),\(s(x)\) 表示 \(1 \sim x\) 的所有数的和,即 \(\frac{x(x + 1)}{2}\)。
当 \(p \leq \sqrt n\) 时,我们可以直接暴力枚举 \(p\) 与 \(k\) 来计算式子的值。
当 \(p > \sqrt n\) 时,对应的 \(k\) 只可能为 \(1\),因此式子可以化为 \(2^{c}\) 的形式,其中 \(c = \sum_\limits{p \in P, p > \sqrt n} p \left\lfloor\frac{n}{p}\right\rfloor\)。考虑如何求 \(c\)。我们对 \(\left\lfloor\frac{n}{p}\right\rfloor\) 整除分块后,问题转化为了计算一段区间内所有质数的和,即求质数的前缀和。使用 min_25 筛即可。
对于第二部分 \(\prod_\limits{i = 1}^n \sigma_0(i)^{\mu(i)}\):
由于当 \(x\) 的唯一分解式中存在一个 \(p^{\alpha}\) 满足 \(\alpha > 1\) 时,\(\mu(x) = 0\),因此对答案式子 \(\prod_\limits{i = 1}^n \sigma_0(i)^{\mu(i)}\) 有贡献的 \(i\) 一定满足 \(i\) 是若干个互不相同的质数的乘积。显然,此时 \(\sigma_0(i)\) 又可以写成 \(2\) 的次幂的形式,且若 \(i\) 是 \(k\) 个互不相同的质数的乘积,那么 \(\sigma_0(i) = 2^k\)。因此若令 \(g(x)\) 表示 \(x\) 包含的不同的质因数的个数,那么有:
\]
其中 \(w = \sum_\limits{i = 1}^n \mu(i)g(i)\)。
令 \(P_i\) 表示从小到大第 \(i\) 个质数,\({\rm minp}(x)\) 表示 \(x\) 的最小质因子。使用 min_25 筛的思想,设 \(f_1(x, k) = \sum_\limits{i = 1}^x [i \in P\ 或\ {\rm minp}(i) > P_k]\mu(i)g(i)\),\(f_2(x, k) = \sum_\limits{i = 1}^x [i \in P\ 或\ {\rm minp}(i) > P_k]\mu(i)\),那么 \(w\) 即为 \(f_1(n, 0)\)。
我们按 \(k\) 从大到小求 \(f_1\) 与 \(f_2\)。考虑加上最小质因子为 \(P_k\) 的数的贡献,那么可以得到 \(f_2\) 的转移如下(注意随着质因子的增加,\(\mu\) 的符号会改变,因此新增的贡献前带有负号):
\]
同理可得 \(f_1\) 的转移如下:
\]
总时间复杂度即为 min_25 筛的时间复杂度,为 \(O(\frac{n^{\frac{3}{4}}}{\log n})\)。
代码
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
const long long mod = 1e12 + 39;
long long n, powk[N];
int tt, sq;
bool is_prime[N];
vector<int> primes;
vector<long long> values;
template<typename T>
struct my_array {
T a[N];
T& operator [] (long long x) {
return x <= sq ? a[x] : a[n / x + sq];
}
};
my_array<long long> g0, g1, f1, f2;
long long add(long long x, long long y, long long md) {
long long t = x + y;
if (t >= md) {
t -= md;
}
return t;
}
long long sub(long long x, long long y, long long md) {
long long t = x - y;
if (t < 0) {
t += md;
}
return t;
}
long long mul(long long x, long long y, long long md) {
long double t = (long double) x * y;
return (x * y - (long long) (t / md) * md) % md;
}
long long qpow(long long v, long long p) {
long long result = 1;
for (; p; p >>= 1, v = mul(v, v, mod)) {
if (p & 1) {
result = mul(result, v, mod);
}
}
return result;
}
void sieve(int n) {
memset(is_prime, true, sizeof is_prime);
for (int i = 2; i <= n; ++i) {
if (is_prime[i]) {
primes.push_back(i);
}
for (auto v : primes) {
long long d = (long long) v * i;
if (d > n) {
break;
}
is_prime[d] = false;
if (i % v == 0) {
break;
}
}
}
}
long long same_diff(long long x) {
long long y = x + 1;
if (x & 1) {
y >>= 1;
} else {
x >>= 1;
}
return mul(x, y, mod - 1);
}
void min_25_sieve() {
for (long long i = 1; i <= n; i = n / (n / i) + 1) {
values.push_back(n / i);
}
for (auto x : values) {
g0[x] = x - 1;
g1[x] = sub(same_diff(x), 1, mod - 1);
}
for (auto p : primes) {
for (auto x : values) {
if (x < (long long) p * p) {
break;
}
long long y = x / p;
long long g0_t = g0[y] - g0[p - 1];
long long g1_t = sub(g1[y], g1[p - 1], mod - 1);
g0[x] -= g0_t;
g1[x] = sub(g1[x], mul(p, g1_t, mod - 1), mod - 1);
}
}
reverse(primes.begin(), primes.end());
for (auto x : values) {
f1[x] = f2[x] = sub(0, g0[x], mod - 1);
}
for (auto p : primes) {
for (auto x : values) {
if (x < (long long) p * p) {
break;
}
long long y = x / p;
long long f2_t = sub(f2[p], f2[y], mod - 1);
long long f1_t = sub(f1[p], f1[y], mod - 1);
f2[x] = add(f2[x], f2_t, mod - 1);
f1[x] = add(f1[x], add(f1_t, f2_t, mod - 1), mod - 1);
}
}
}
int main() {
scanf("%d", &tt);
while (tt--) {
scanf("%lld", &n);
sq = sqrt(n);
primes.clear();
values.clear();
memset(powk, 0, sizeof powk);
sieve(sq);
min_25_sieve();
long long answer = 1;
int maxk = 1;
for (auto p : primes) {
long long t = p;
for (int j = 1; t <= n; ++j, t *= p) {
long long num1 = mul(t, same_diff(n / t), mod - 1);
long long num2 = mul(t * p, same_diff(n / t / p), mod - 1);
maxk = max(maxk, j + 1);
powk[j + 1] = add(powk[j + 1], sub(num1, num2, mod - 1), mod - 1);
}
}
for (int i = 2; i <= maxk; ++i) {
answer = mul(answer, qpow(i, powk[i]), mod);
}
long long powm = 0;
for (long long i = sq + 1; i <= n; i = n / (n / i) + 1) {
long long j = n / (n / i);
powm = add(powm, mul(sub(g1[j], g1[i - 1], mod - 1), same_diff(n / i), mod - 1), mod - 1);
}
answer = mul(answer, qpow(2, powm), mod);
answer = mul(answer, qpow(2, f1[n]), mod);
printf("%lld\n", answer);
}
return 0;
}
51nod1965. 奇怪的式子(min_25筛)的更多相关文章
- 【51NOD1965】奇怪的式子 min_25筛
题目描述 给你\(n\),求 \[ \prod_{i=1}^n{\sigma_0(i)}^{i+\mu(i)} \] 对\({10}^{12}+39\)取模. \(\sigma_0(i)\)表示约数个 ...
- 51nod 1965 奇怪的式子——min_25筛
题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1965 考虑 \( \prod_{i=1}^{n}\sigma_0^i \) \ ...
- 51nod 1965 奇怪的式子 —— min_25筛
题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1965 推式子就同这里:https://www.cnblogs.com/yoyo ...
- 【51NOD1847】奇怪的数学题 min_25筛
题目描述 记\(sgcd(i,j)\)为\(i,j\)的次大公约数. 给你\(n\),求 \[ \sum_{i=1}^n\sum_{j=1}^n{sgcd(i,j)}^k \] 对\(2^{32}\) ...
- 51nod1847 奇怪的数学题 (Min_25筛+第二类斯特林数)
link \(\sum_{i=1}^n\sum_{j=1}^n\mathrm{sgcd}(i,j)^k=\sum_{p=1}^ns(p)^k\sum_{i=1}^n\sum_{j=1}^n[\gcd( ...
- [51nod1965]奇怪的式子
noteskey 怎么说,魔性的题目...拿来练手 min_25 正好...吧 首先就是把式子拆开来算贡献嘛 \[ANS=\prod_{i=1}^n \sigma_0(i)^{\mu(i)} \pro ...
- 【51nod1965】奇怪的式子
Portal --> 51nod1965 Solution 怎么说呢..这题..做的有点痛苦.. 首先看这个式子长得..比较奇怪,指数里面那个加号有点烦人,而且这个函数不是一个积性函数也有点烦人 ...
- 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...
- 【UOJ448】【集训队作业2018】人类的本质 min_25筛
题目大意 给你 \(n,m\),求 \[ \sum_{i=1}^n\sum_{x_1,x_2,\ldots,x_m=1}^i\operatorname{lcm}(\gcd(i,x_1),\gcd(i, ...
随机推荐
- 服务器上如何将D盘修改为E盘
1.计算机管理→磁盘管理 2.右键点击需要调整的磁盘→更改驱动器号和路径 3.在弹出的设置框中→更改 4.点击右边的下拉箭头▼→选择一个盘符→确定 注意:如果盘符混乱,需要理顺,因为有些盘符占有了,不 ...
- docker-compose示例与命令介绍
一.docker-compose.yml示例 version: ‘2‘ #指定compose版本 services: log: #服务名称 image: vmware/harbor-log #指定镜像 ...
- BZOJ 1001 狼抓兔子 (最小割转化成最短路)
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 27715 Solved: 7134[Submit][ ...
- CodeForces 681A A Good Contest (水题)
题意:给定 n 个人和before, after的分数,让你找 before 的分数大于等于2400并且before 小于 after. 析:看完题意就知道怎么算了吧..不用说了 #include & ...
- jQuery框架-3.jQuery自定义封装插件和第三方插件
一.jQuery的封装扩展 1.jQuery中extend方法使用 (挂在到jQuery和jQuery.fn两对象身上的使用) 1.1.官方文档定义: jQuery.extend Merge th ...
- java 文件中 定义一个字符串,它的默认编码是什么?
.java 文件的编码就是 String 字符串的编码 File 文件的编码就是 文件内容的编码 request 的设置的编码就是inputstream 的编码 jvm 的默认编码(the defau ...
- UIWebView清除缓存和cookie[转]
现在项目遇到一个问题,游戏底层用Cocos2d-x,公告UI实现是用的UIWebView, 然后第一次在有网络的环境下运行公告UI,会加载url链接,同时就会自动存入缓存,当下次手机没有网络的环境下, ...
- (1)-使用json所要用到的jar包下载
json是个非常重要的数据结构,在web开发中应用十分广泛.我觉得每个人都应该好好的去研究一下json的底层实现,需要准备下面的六个jar包:commons-lang-1.0.4.jar common ...
- .NET 匿名方法的BUG,请专家解答
匿名方法是.NET 3.5之后的一个好东东,很多人使用,但是我在最近的工作当中发现了一个问题. 请专家解答 //list里存放10个数字 List<); ; i < ; i++) { li ...
- 在linux中使用包管理器安装node.js
网上文章中,在linux下安装node.js都是使用源码编译,其实node的github上已经提供了各个系统下使用各自的包管理器(package manager)安装node.js的方法. 1. 在U ...