1.ThiftServer介绍

  1. 正常的hive仅允许使用HiveQL执行查询、更新等操作,并且该方式比较笨拙单一。幸好Hive提供了轻客户端的实现,通过HiveServer或者HiveServer2,客户端可以在不启动CLI的情况下对Hive中的数据进行操作,两者都允许远程客户端使用多种编程语言如Java、Python向Hive提交请求,取回结果 使用jdbc协议连接hive的thriftserver服务器

  2. 可以实现远程访问

  3. 可以通过命令链接多个hive

2.ThiftServer启动

  1. 启动hive的thriftserver

    #cd /soft/hive/bin/
    #./hiveserver2
    #默认启动非后台启动 需要开另外一个终端
    #端口号为10000
  2. 使用beeline连接hiveserver2服务器,client端命令行程序

    #beeline
    Beeline version 2.1.1 by Apache Hive
    #输入要链接的服务
    beeline> !connect jdbc:hive2://localhost:10000
    SLF4J: Class path contains multiple SLF4J bindings.
    SLF4J: Found binding in [jar:file:/soft/apache-hive-2.1.1-bin/lib/log4j-slf4j-impl-2.4.1.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: Found binding in [jar:file:/soft/hadoop-2.7.3/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
    SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
    SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
    Connecting to jdbc:hive2://localhost:10000
    Enter username for jdbc:hive2://localhost:10000:
    Enter password for jdbc:hive2://localhost:10000:
    Connected to: Apache Hive (version 2.1.1)
    Driver: Hive JDBC (version 2.1.1)
    17/07/13 10:31:00 [main]: WARN jdbc.HiveConnection: Request to set autoCommit to false; Hive does not support autoCommit=false.
    Transaction isolation: TRANSACTION_REPEATABLE_READ
    0: jdbc:hive2://localhost:10000>

3.beeline的基本用法

  1. 查看数据库

    0: jdbc:hive2://localhost:10000> show databases;
    +----------------+--+
    | database_name |
    +----------------+--+
    | default |
    | liuyao |
    +----------------+--+
    2 rows selected (1.485 seconds)
  2. 查看表

    0: jdbc:hive2://localhost:10000> use liuyao;
    No rows affected (0.123 seconds)
    0: jdbc:hive2://localhost:10000> show tables;
    +-----------+--+
    | tab_name |
    +-----------+--+
    | test |
    +-----------+--+
    1 row selected (0.283 seconds)
    或者使用
    0: jdbc:hive2://localhost:10000> !tables
    +------------+--------------+-------------+-------------+----------+-----------+-------------+------------+----------------------------+-----------------+--+
    | TABLE_CAT | TABLE_SCHEM | TABLE_NAME | TABLE_TYPE | REMARKS | TYPE_CAT | TYPE_SCHEM | TYPE_NAME | SELF_REFERENCING_COL_NAME | REF_GENERATION |
    +------------+--------------+-------------+-------------+----------+-----------+-------------+------------+----------------------------+-----------------+--+
    | | liuyao | test | TABLE | NULL | NULL | NULL | NULL | NULL | NULL |
    +------------+--------------+-------------+-------------+----------+-----------+-------------+------------+----------------------------+-----------------+--+
    0: jdbc:hive2://localhost:10000>
  3. 创建表

    CREATE TABLE emp0
    (
    name string,
    arr ARRAY<string>,
    stru1 STRUCT<sex:string,age:int>,
    map1 MAP<string,int>,
    map2 MAP<string,ARRAY<string>>
    )
    ;
  4. 查看表结构

    0: jdbc:hive2://localhost:10000> desc emp0;
    +-----------+-----------------------------+----------+--+
    | col_name | data_type | comment |
    +-----------+-----------------------------+----------+--+
    | name | string | |
    | arr | array<string> | |
    | stru1 | struct<sex:string,age:int> | |
    | map1 | map<string,int> | |
    | map2 | map<string,array<string>> | |
    +-----------+-----------------------------+----------+--+
    5 rows selected (0.296 seconds)
  5. 删除表

    0: jdbc:hive2://localhost:10000> use default;
    No rows affected (0.092 seconds)
    0: jdbc:hive2://localhost:10000> drop table emp0;
    No rows affected (1.823 seconds)

4. 数据导入查询等演示

  1. 生成数据

    #vim /root/hive.data
    放入以下数据
    Michael|Montreal,Toronto|Male,30|DB:80|Product:Developer^DLead
    Will|Montreal|Male,35|Perl:85|Product:Lead,Test:Lead
    Shelley|New York|Female,27|Python:80|Test:Lead,COE:Architect
    Lucy|Vancouver|Female,57|Sales:89,HR:94|Sales:Lead
  2. 创建表

    CREATE TABLE emp1
    (
    name string,
    arr ARRAY<string>,
    stru1 STRUCT<sex:string,age:int>,
    map1 MAP<string,int>,
    map2 MAP<string,ARRAY<string>>
    )
    ROW FORMAT DELIMITED
    FIELDS TERMINATED BY '|' //字段分隔符
    COLLECTION ITEMS TERMINATED BY ','
    MAP KEYS TERMINATED BY ':' //map的kv之间分隔符
    LINES TERMINATED BY '\n'; //集合元素分隔符
  3. 导入数据

    如果数据在本地用
    0: jdbc:hive2://localhost:10000> load data local inpath '/root/hive.data' into table emp0;
    No rows affected (0.956 seconds)
    0: jdbc:hive2://localhost:10000>
  4. 查询

    0: jdbc:hive2://localhost:10000> select * from emp0;
    +------------+-------------------------+----------------------------+-----------------------+----------------------------------------+--+
    | emp0.name | emp0.arr | emp0.stru1 | emp0.map1 | emp0.map2 |
    +------------+-------------------------+----------------------------+-----------------------+----------------------------------------+--+
    | Michael | ["Montreal","Toronto"] | {"sex":"Male","age":30} | {"DB":80} | {"Product":["Developer^DLead"]} |
    | Will | ["Montreal"] | {"sex":"Male","age":35} | {"Perl":85} | {"Product":["Lead"],"Test":["Lead"]} |
    | Shelley | ["New York"] | {"sex":"Female","age":27} | {"Python":80} | {"Test":["Lead"],"COE":["Architect"]} |
    | Lucy | ["Vancouver"] | {"sex":"Female","age":57} | {"Sales":89,"HR":94} | {"Sales":["Lead"]} |
    | | NULL | NULL | NULL | NULL |
    +------------+-------------------------+----------------------------+-----------------------+----------------------------------------+--+
    5 rows selected (1.049 seconds)
    0: jdbc:hive2://localhost:10000> select arr[0] from emp0;
    +------------+--+
    | c0 |
    +------------+--+
    | Montreal |
    | Montreal |
    | New York |
    | Vancouver |
    | NULL |
    +------------+--+ 5 rows selected (0.656 seconds)
    0: jdbc:hive2://localhost:10000> select stru1 from emp0;
    +----------------------------+--+
    | stru1 |
    +----------------------------+--+
    | {"sex":"Male","age":30} |
    | {"sex":"Male","age":35} |
    | {"sex":"Female","age":27} |
    | {"sex":"Female","age":57} |
    | NULL |
    +----------------------------+--+
    5 rows selected (0.193 seconds)
    0: jdbc:hive2://localhost:10000> select map1 from emp0;
    +-----------------------+--+
    | map1 |
    +-----------------------+--+
    | {"DB":80} |
    | {"Perl":85} |
    | {"Python":80} |
    | {"Sales":89,"HR":94} |
    | NULL |
    +-----------------------+--+
    5 rows selected (0.216 seconds)
    0: jdbc:hive2://localhost:10000> select map1["DB"] from emp0;
    +-------+--+
    | c0 |
    +-------+--+
    | 80 |
    | NULL |
    | NULL |
    | NULL |
    | NULL |
    +-------+--+
    5 rows selected (0.249 seconds)

5.使用api编程方式连接到thriftserver服务器

public class TestCURD {

    @Test
public void select() throws Exception{
String driverClass = "org.apache.hive.jdbc.HiveDriver";
String url = "jdbc:hive2://192.168.10.145:10000/liuyao";
Class.forName(driverClass);
Connection connection = DriverManager.getConnection(url);
System.out.println(connection);
Statement statement = connection.createStatement();
ResultSet rs = statement.executeQuery("SELECT * FROM emp0");
while (rs.next()){
int id = rs.getInt(1);
String name = rs.getString(2);
System.out.println(id + "," + name);
}
rs.close();
connection.close(); }
}

3.hive的thriftserver服务的更多相关文章

  1. SparkSQL ThriftServer服务的使用和程序中JDBC的连接

    SparkSQL ThriftServer服务的使用和程序中JDBC的连接 此时要注意版本问题,我第一次用的是hive2.1.1的,因为要用sparksql的hive服务,但是sparksql默认的是 ...

  2. 037 SparkSQL ThriftServer服务的使用和程序中JDBC的连接

    一:使用 1.实质 提供JDBC/ODBC连接的服务 服务运行方式是一个Spark的应用程序,只是这个应用程序支持JDBC/ODBC的连接, 所以:可以通过应用的4040页面来进行查看操作 2.启动服 ...

  3. Hive环境搭建和SparkSql整合

    一.搭建准备环境 在搭建Hive和SparkSql进行整合之前,首先需要搭建完成HDFS和Spark相关环境 这里使用Hive和Spark进行整合的目的主要是: 1.使用Hive对SparkSql中产 ...

  4. 大数据学习(12)—— Hive Server2服务

    什么是Hive Server2 上一篇我们启动了hive --service metastore服务,可以通过命令行来访问hive服务,但是它不支持多客户端同时访问,参见官网说明:HiveServer ...

  5. 【自动化】基于Spark streaming的SQL服务实时自动化运维

    设计背景 spark thriftserver目前线上有10个实例,以往通过监控端口存活的方式很不准确,当出故障时进程不退出情况很多,而手动去查看日志再重启处理服务这个过程很低效,故设计利用Spark ...

  6. hive on spark VS SparkSQL VS hive on tez

    http://blog.csdn.net/wtq1993/article/details/52435563 http://blog.csdn.net/yeruby/article/details/51 ...

  7. Hadoop学习笔记—17.Hive框架学习

    一.Hive:一个牛逼的数据仓库 1.1 神马是Hive? Hive 是建立在 Hadoop 基础上的数据仓库基础构架.它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储. ...

  8. 附录C 编译安装Hive

    如果需要直接安装Hive,可以跳过编译步骤,从Hive的官网下载编译好的安装包,下载地址为http://hive.apache.org/downloads.html . C.1  编译Hive C.1 ...

  9. Hive Streaming 追加 ORC 文件

    1.概述 在存储业务数据的时候,随着业务的增长,Hive 表存储在 HDFS 的上的数据会随时间的增加而增加,而以 Text 文本格式存储在 HDFS 上,所消耗的容量资源巨大.那么,我们需要有一种方 ...

随机推荐

  1. Java常用修饰符总结

    修饰符是用于限定类型以及类型成员申明的一种符号,可用于修饰类.变量和方法,分为访问修饰符和非访问修饰符.访问修饰符控制访问权限,不同的访问修饰符有不同的权限范围,而非访问修饰符则是提供一些特有功能. ...

  2. 19-3-8Python中编码的进阶、文件操作初识、深浅copy

    编码的进阶 ASCII:英文字母,数字,特殊符号,——>  二进制的对应关系 Str: 1个字符——> 1个字节 Unicode:万国码:世界上所有的文字与二进制的对应关系 1个字符——& ...

  3. java 字节流文件复制方法总结

    1.使用字节流每次读写单个字节 public static void main(String[] args) throws IOException { FileInputStream fis = ne ...

  4. Immutable.js 以及在 react+redux 项目中的实践

    来自一位美团大牛的分享,相信可以帮助到你. 原文链接:https://juejin.im/post/5948985ea0bb9f006bed7472?utm_source=tuicool&ut ...

  5. JS中判断字符串中出现次数最多的字符及出现的次数

    <script type="text/javascript"> var str = 'qwertyuilo.,mnbvcsarrrrrrrrtyuiop;l,mhgfd ...

  6. [笔记] FireDAC DataSet 导入及导出 JSON

    刚好需要将 FireDAC DataSet (TFDDataSet, TFDQuery...) 转成 JSON,网上找了一圈,原来从 XE6 开始就支持这个功能了: 储存: DataSet1.Save ...

  7. 07-容器类Widget

    容器类Widget 容器类Widget一般只是包装其子Widget,对其添加一些修饰(补白或背景色等).变换(旋转或剪裁等).或限制(大小等) Padding Padding可以给其子节点添加补白(填 ...

  8. 数据结构与算法之Stack(栈)——in dart

    用dart 语言实现一个简单的stack(栈).栈的内部用List实现. class Stack<E> { final List<E> _stack; final int ca ...

  9. pentestbox更新msf

    pentestbox成功升级msf 1.  输入 msfupdate 进行软件更新 2.  在[*] Updating gems...,软件报错,提示找不到文件路径,输入以下两条命令,尝试单独安装 g ...

  10. Why mobile web apps are slow

    http://sealedabstract.com/rants/why-mobile-web-apps-are-slow/ I’ve had an unusual number of interest ...