[抄题]:

There are a row of n houses, each house can be painted with one of the k colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.

The cost of painting each house with a certain color is represented by a n x k cost matrix. For example, costs[0][0] is the cost of painting house 0 with color 0; costs[1][2] is the cost of painting house 1 with color 2, and so on... Find the minimum cost to paint all houses.

Note:
All costs are positive integers.

Example:

Input: [[1,5,3],[2,9,4]]
Output: 5
Explanation: Paint house 0 into color 0, paint house 1 into color 2. Minimum cost: 1 + 4 = 5;
  Or paint house 0 into color 2, paint house 1 into color 0. Minimum cost: 3 + 2 = 5.

[暴力解法]:

时间分析:

空间分析:

[优化后]:

时间分析:

空间分析:

[奇葩输出条件]:

[奇葩corner case]:

[思维问题]:

k个颜色就不知道怎么办了:还是试啊 再套一层循环 一个个加

[英文数据结构或算法,为什么不用别的数据结构或算法]:

[一句话思路]:

三重循环, s 和 j相等的时候就continue掉

[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

[画图]:

[一刷]:

  1. i j是主变量,所以cost[i][j]都得用, dp[i][j]数组在不变的情况下就是它自己本身
dp[i][j] = Math.min(dp[i][j], dp[i - 1][s] + costs[i][j]);

[二刷]:

[三刷]:

[四刷]:

[五刷]:

[五分钟肉眼debug的结果]:

[总结]:

所以cost[i][j]都得用, dp[i][j]数组在不变的情况下就是它自己本身

[复杂度]:Time complexity: O(n*k*k) Space complexity: O(n*k)

[算法思想:迭代/递归/分治/贪心]:

贪心

[关键模板化代码]:

[其他解法]:

[Follow Up]:

[LC给出的题目变变变]:

[代码风格] :

[是否头一次写此类driver funcion的代码] :

class Solution {
public int minCostII(int[][] costs) {
//cc
if (costs == null || costs.length == 0) return 0; //ini: dp[][], dp[0][k]
int n = costs.length, k = costs[0].length;
int[][] dp = new int[n][k];
for (int j = 0; j < k; j++) {
dp[0][j] = costs[0][j];
} //for loop: continue;
for (int i = 1; i < n; i++) {
for (int j = 0; j < k; j++) {
dp[i][j] = Integer.MAX_VALUE;
for (int s = 0; s < k; s++) {
if (s == j) continue;
dp[i][j] = Math.min(dp[i][j], dp[i - 1][s] + costs[i][j]);
}
}
} //return: compare each costs[i][k]
int res = Integer.MAX_VALUE;
for (int j = 0; j < k; j++) {
res = Math.min(res, dp[n - 1][j]);
} return res;
}
}

265. Paint House II 房子涂色K种选择的版本的更多相关文章

  1. leetcode 198. House Robber 、 213. House Robber II 、337. House Robber III 、256. Paint House(lintcode 515) 、265. Paint House II(lintcode 516) 、276. Paint Fence(lintcode 514)

    House Robber:不能相邻,求能获得的最大值 House Robber II:不能相邻且第一个和最后一个不能同时取,求能获得的最大值 House Robber III:二叉树下的不能相邻,求能 ...

  2. [leetcode]265. Paint House II粉刷房子(K色可选)

    There are a row of n houses, each house can be painted with one of the k colors. The cost of paintin ...

  3. [LeetCode] 265. Paint House II 粉刷房子

    There are a row of n houses, each house can be painted with one of the k colors. The cost of paintin ...

  4. [leetcode]256. Paint House粉刷房子(三色可选)

    There are a row of n houses, each house can be painted with one of the three colors: red, blue or gr ...

  5. 265. Paint House II

    题目: There are a row of n houses, each house can be painted with one of the k colors. The cost of pai ...

  6. [LeetCode#265] Paint House II

    Problem: There are a row of n houses, each house can be painted with one of the k colors. The cost o ...

  7. LC 265. Paint House II

    There are a row of n houses, each house can be painted with one of the k colors. The cost of paintin ...

  8. [LeetCode] Paint House II 粉刷房子之二

    There are a row of n houses, each house can be painted with one of the k colors. The cost of paintin ...

  9. 【BZOJ-1260】涂色paint 区间DP

    1260: [CQOI2007]涂色paint Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 1147  Solved: 698[Submit][Sta ...

随机推荐

  1. 判断一棵树是否为二叉搜索树(二叉排序树) python

    输入一棵树,判断这棵树是否为二叉搜索树.首先要知道什么是排序二叉树,二叉排序树是这样定义的,二叉排序树或者是一棵空树,或者是具有下列性质的二叉树: (1)若左子树不空,则左子树上所有结点的值均小于它的 ...

  2. 判断对称二叉树 python代码

    对称二叉树的含义非常容易理解,左右子树关于根节点对称,具体来讲,对于一颗对称二叉树的每一颗子树,以穿过根节点的直线为对称轴,左边子树的左节点=右边子树的右节点,左边子树的右节点=左边子树的左节点.所以 ...

  3. POJ1651 Multiplication Puzzle【区间DP】

    LINK 每次删除一个数,代价是左右两边相邻的数的当前数的积 第一个和最后一个数不能删除 问最后只剩下第一个数的最后一个数的最小代价 思路 很简单的DP 正着考虑没有办法确定两边的数 那么就把每个区间 ...

  4. iOS NSLog去掉时间戳及其他输出样式

    1.一般项目中我的NSLog会在Prefix.pch文件添加如下代码,已保证在非调试状态下NSLog不工作   1 2 3 4 5 #ifdef DEBUG #define NSLog(...) NS ...

  5. timescaledb replication 使用

    replication 可以确保系统的ha 以及lb 数据的查询,timesacledb 使用pg 内置的stream replication 进行复制的支持 docker 运行参考 https:// ...

  6. linux shell获取用户输入

    一.获取用户输入1.基本读取read命令接收标准输入的输入,或其它文件描述符的输入.得到输入后,read命令将数据输入放入一个标准变量中.[root@rac2 ~]# cat t8.sh #!/bin ...

  7. Appcan、apicloud、HBuilder 不同之处解析

    来源:http://www.mamicode.com/info-detail-1129829.html 现在Hybrid app是一中非常火热的开发模式,在国内对应的开发工具也乱象丛生,有WeX5.c ...

  8. linux svn soeasy

    http://blog.163.com/longsu2010@yeah/blog/static/173612348201202114212933/

  9. Log4j(3)--rootLogger根配置和appender输出类型配置

    参考博客:http://blog.java1234.com/blog/articles/270.html 一.rootLogger根配置: Log4j 根配置语法 log4j.rootLogger = ...

  10. mysql-2 数据类型

    mysql中定义数据字段的类型对数据库的优化是非常重要的. mysql数据类型大致分为三类:数值.日期/时间.字符串(字符)类型. 数值类型 MySQL支持所有标准SQL数值数据类型. 这些类型包括严 ...