[抄题]:

There are a row of n houses, each house can be painted with one of the k colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.

The cost of painting each house with a certain color is represented by a n x k cost matrix. For example, costs[0][0] is the cost of painting house 0 with color 0; costs[1][2] is the cost of painting house 1 with color 2, and so on... Find the minimum cost to paint all houses.

Note:
All costs are positive integers.

Example:

Input: [[1,5,3],[2,9,4]]
Output: 5
Explanation: Paint house 0 into color 0, paint house 1 into color 2. Minimum cost: 1 + 4 = 5;
  Or paint house 0 into color 2, paint house 1 into color 0. Minimum cost: 3 + 2 = 5.

[暴力解法]:

时间分析:

空间分析:

[优化后]:

时间分析:

空间分析:

[奇葩输出条件]:

[奇葩corner case]:

[思维问题]:

k个颜色就不知道怎么办了:还是试啊 再套一层循环 一个个加

[英文数据结构或算法,为什么不用别的数据结构或算法]:

[一句话思路]:

三重循环, s 和 j相等的时候就continue掉

[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

[画图]:

[一刷]:

  1. i j是主变量,所以cost[i][j]都得用, dp[i][j]数组在不变的情况下就是它自己本身
dp[i][j] = Math.min(dp[i][j], dp[i - 1][s] + costs[i][j]);

[二刷]:

[三刷]:

[四刷]:

[五刷]:

[五分钟肉眼debug的结果]:

[总结]:

所以cost[i][j]都得用, dp[i][j]数组在不变的情况下就是它自己本身

[复杂度]:Time complexity: O(n*k*k) Space complexity: O(n*k)

[算法思想:迭代/递归/分治/贪心]:

贪心

[关键模板化代码]:

[其他解法]:

[Follow Up]:

[LC给出的题目变变变]:

[代码风格] :

[是否头一次写此类driver funcion的代码] :

class Solution {
public int minCostII(int[][] costs) {
//cc
if (costs == null || costs.length == 0) return 0; //ini: dp[][], dp[0][k]
int n = costs.length, k = costs[0].length;
int[][] dp = new int[n][k];
for (int j = 0; j < k; j++) {
dp[0][j] = costs[0][j];
} //for loop: continue;
for (int i = 1; i < n; i++) {
for (int j = 0; j < k; j++) {
dp[i][j] = Integer.MAX_VALUE;
for (int s = 0; s < k; s++) {
if (s == j) continue;
dp[i][j] = Math.min(dp[i][j], dp[i - 1][s] + costs[i][j]);
}
}
} //return: compare each costs[i][k]
int res = Integer.MAX_VALUE;
for (int j = 0; j < k; j++) {
res = Math.min(res, dp[n - 1][j]);
} return res;
}
}

265. Paint House II 房子涂色K种选择的版本的更多相关文章

  1. leetcode 198. House Robber 、 213. House Robber II 、337. House Robber III 、256. Paint House(lintcode 515) 、265. Paint House II(lintcode 516) 、276. Paint Fence(lintcode 514)

    House Robber:不能相邻,求能获得的最大值 House Robber II:不能相邻且第一个和最后一个不能同时取,求能获得的最大值 House Robber III:二叉树下的不能相邻,求能 ...

  2. [leetcode]265. Paint House II粉刷房子(K色可选)

    There are a row of n houses, each house can be painted with one of the k colors. The cost of paintin ...

  3. [LeetCode] 265. Paint House II 粉刷房子

    There are a row of n houses, each house can be painted with one of the k colors. The cost of paintin ...

  4. [leetcode]256. Paint House粉刷房子(三色可选)

    There are a row of n houses, each house can be painted with one of the three colors: red, blue or gr ...

  5. 265. Paint House II

    题目: There are a row of n houses, each house can be painted with one of the k colors. The cost of pai ...

  6. [LeetCode#265] Paint House II

    Problem: There are a row of n houses, each house can be painted with one of the k colors. The cost o ...

  7. LC 265. Paint House II

    There are a row of n houses, each house can be painted with one of the k colors. The cost of paintin ...

  8. [LeetCode] Paint House II 粉刷房子之二

    There are a row of n houses, each house can be painted with one of the k colors. The cost of paintin ...

  9. 【BZOJ-1260】涂色paint 区间DP

    1260: [CQOI2007]涂色paint Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 1147  Solved: 698[Submit][Sta ...

随机推荐

  1. Kotlin Reference (十) Interfaces

    most from reference 接口 Kotlin中的接口非常类似于Java8,它们可以包含抽象方法的声明以及方法实现.与抽象类不同的是接口不能存储状态.它们可以具有属性,但这些需要是抽象的或 ...

  2. linux screen 命令详解(转载)

    转载于:http://www.cnblogs.com/mchina/archive/2013/01/30/2880680.html 一.背景 系统管理员经常需要SSH 或者telent 远程登录到Li ...

  3. I.MX6 Linux 3.0.35 SD boot

    /********************************************************************************* * I.MX6 Linux 3.0 ...

  4. [笔记]CodeIgniter的SESSION

         由于HTTP协议本身是无状态的,所以当保留某个用户的访问状态信息时,需要客户端有一个唯一标识传给服务端,这个唯一标识就是SESSION ID,存放在客户端的COOKIE中,然后服务端根据该标 ...

  5. springboot整合mybatis增删改查(三):mybatis逆向工程

    上一篇已经把项目基本框架完善,接下来就是利用Mybatis Generator逆向工程进行mybatis的整合. 我们在创建项目开始的时候已经勾选web,mybatis,sql等,但是这些依赖还是不够 ...

  6. Bakery

    Masha wants to open her own bakery and bake muffins in one of the n cities numbered from 1 to n. The ...

  7. Python源码分析之dis

    一.简单例子 def add(a, b): return a + b add_nums.py import foo a = [1, 'python'] a = 'a string' def func( ...

  8. Web Server部署架构图

    一.整体架构图 二.框架的瓶颈 上述框架的瓶颈在存储NFS,现在较多的使用的是GFS分布式存储

  9. deno学习二 基本代码

    deno 介绍是安全的ts 运行时 简单的代码 使用js(app.js) console.log("demoapp") 输出 dalongdemo 使用ts(app.ts) con ...

  10. Ant build.xml相关属性详解

    关键字: ant build.xml Ant的概念 可能有些读者并不连接什么是Ant以及入可使用它,但只要使用通过Linux系统得读者,应该知道make这个命令.当编译Linux内核及一些软件的源程序 ...