本文分享自华为云社区《TensorFlow模型训练常见案例》,作者: 昇腾CANN。

基于TensorFlow的Python API开发的训练脚本默认运行在CPU/GPU/TPU上,为了使这些脚本能够利用昇腾AI处理器的强大算力,需要将其迁移到昇腾平台。

本期分享几个TensorFlow网络迁移到昇腾平台后执行失败或者执行性能差的典型案例,并给出原因分析及解决方法。

01 数据预处理中存在资源类算子,导致训练异常

问题现象

TensorFlow网络执行时,报如下错误:

[2021-03-19 13:50:24.895266: W tensorflow/core/framework/op_kernel.cc:1651] OP_REQUIRES failed at lookup_table_op.cc:809 : Failed precondition: Table not initialized.

[2021-03-19 13:50:24.895283: W tensorflow/core/framework/op_kernel.cc:1651] OP_REQUIRES failed at lookup_table_op.cc:809 : Failed precondition: Table not initialized.

原因分析

初始化图中存在资源类算子HaskTableV2 ,数据预处理中存在资源类算子LookupTableFindV2,两个算子需要配对使用。

昇腾AI处理器默认采用计算全下沉模式,即所有的计算类算子(包括初始化图中的资源类算子)全部在Device侧执行,数据预处理仍在Host执行。这样数据预处理中的LookupTableFindV2算子与初始化图中的HaskTableV2算子未在同一设备执行,导致网络运行出错。

解决方案

需要修改训练脚本,使能混合计算能力,将资源类算子的初始化图也留在Host侧执行,训练脚本修改方法如下:

from npu_bridge.npu_init import *

config = tf.ConfigProto()

custom_op = config.graph_options.rewrite_options.custom_optimizers.add()

custom_op.name = "NpuOptimizer"

custom_op.parameter_map["mix_compile_mode"].b = True

config.graph_options.rewrite_options.remapping = RewriterConfig.OFF

config.graph_options.rewrite_options.memory_optimization = RewriterConfig.OFF

with tf.Session(config=config) as sess:

sess.run(...)

其中配置参数“mix_compile_mode”是混合计算开启开关,当此开关配置为“True”后,会将需要成对使用的资源类算子留在前端框架在线执行。

补充说明:当用户的预处理脚本中存在需要成对使用的tf.contrib.lookup下Table类的API时,需要参考此方法使能混合计算功能,将初始化图中的对应算子留在Host侧执行。

02 数据预处理中存在tf.Variable,导致训练异常

问题现象

TensorFlow网络执行时,报如下错误:

tensorflow.python.framework.errors_impl.FailedPreconditionError: Error while reading resource variable inference/embed_continuous from Container: localhost. This could mean that the variable was uninitialized. Not found: Resource localhost/inference/embed_continuous/N10tensorflow3VarE does not exist.

原因分析

此问题是由于数据预处理脚本中存在tf.Variable变量。训练脚本在昇腾平台运行时,tf.Variable变量在Host侧执行,而tf.Variable变量的初始化在Device侧执行,变量执行和变量初始化不在同一设备执行,导致训练异常。

使用了tf.Variable的训练脚本代码示例如下:

batch_size = tf.Variable(

tf.placeholder(tf.int64, [], 'batch_size'),

trainable= False, collections=[]

)

train_dataset = train_dataset.batch(batch_size, drop_remainder=True)

解决方案

需要修改训练脚本,将tf.Variable修改成常量,修改示例如下:

batch_size = 64 train_dataset = train_dataset.batch(batch_size, drop_remainder=True)

batch_size = 64

train_dataset = train_dataset.batch(batch_size, drop_remainder=True)

03 动态shape网络执行时报v1控制流算子不支持的错误

问题现象

TensorFlow 1.15版本的动态shape网络执行时,报如下错误:

node node_name(node_type) is v1 control operator, which is not supported, please convert to v2 control operator

原因分析

由于当前TensorFlow网络为动态shape网络,且存在V1版本的控制流算子。在昇腾AI处理器执行TensorFlow动态shape网络当前不支持V1版本的控制流算子,所以会造成网络运行失败。

解决方案

将网络中的TensorFlow V1版本的控制流算子转换为V2版本,即可解决此问题。

方法一:通过设置如下环境变量将TensorFlow V1版本的控制流算子转换为V2版本。

export ENABLE_FORCE_V2_CONTROL=1

方法二:修改网络脚本,在import tensorflow as tf后增加如下两条指令,将TensorFlow V1版本的控制流算子转换为V2版本。

tf.enable_control_flow_v2()

tf.enable_resource_variables()

04 网络调测时ReduceSum算子执行性能差

问题现象

网络调测时,网络整体性能较慢。通过Profiling工具获取网络的Profiling数据,并进行算子的性能数据分析,发现ReduceSum算子的性能很差。

查看Profiling性能数据中ReduceSum算子的详细信息,关键字段如下表蓝色字体所示:

op_type

block_dim

input_shape

input_data_type

input_formats

ReduceSum

1

1,256,256,3

DT_FLOAT16

NHWC

ReduceSum算子的输入数据类型(input_data_type)为“DT_FLOAT16”,block_dim字段的值为“1”,说明该算子未开启多核并行计算。

原因分析

针对昇腾AI处理器的ReduceSum算子,若输入数据类型为float16,由于硬件限制,某些场景下会无法开启多核计算。

解决方案

ReduceSum算子输入数据是float16的情况可能有如下两种场景:

场景一:

网络调测时未开启混合精度,ReduceSum算子的输入数据本身就是float16类型,此种情况下,若ReduceSum算子的性能较差,可尝试在ReduceSum算子前插入一个Cast算子,将算子的输入数据类型从float16转换为float32。

ReduceSum算子在输入类型为float32的场景下,会使能多核并发计算,从而达到提升该算子性能的效果。

场景二:

网络调测时开启了混合精度,将ReduceSum算子的输入数据类型从float32转换成了float16,此种情况下,可将ReduceSum算子加入混合精度黑名单,这样网络调测时ReduceSum算子就不会被转换成float16类型,从而避免该算子性能的劣化。

将ReduceSum算子加入混合精度黑名单的方法如下:

1) 修改网络脚本,通过modify_mixlist参数指定需要修改的混合精度算子黑名单,修改示例如下:

# Estimator模式修改方法

npu_config=NPURunConfig(

...

precision_mode="allow_mix_precision",

modify_mixlist="/home/test/ops_info.json"

)

# sess.run模式修改方法

config = tf.ConfigProto()

custom_op = config.graph_options.rewrite_options.custom_optimizers.add()

custom_op.name = "NpuOptimizer"

custom_op.parameter_map["use_off_line"].b = True

custom_op.parameter_map["precision_mode"].s = tf.compat.as_bytes("allow_mix_precision")

custom_op.parameter_map["modify_mixlist"].s = tf.compat.as_bytes("/home/test/ops_info.json")

2) 在ops_info.json文件中进行算子黑名单的配置,配置示例如下:

{

"black-list": {

"to-add": ["ReduceSumD"]

}

}

补充说明:仅在ReduceSum算子性能较差时,且符合本案例中的问题现象时,可尝试使用此方法进行性能提升。

05 更多介绍

[1]昇腾文档中心:https://www.hiascend.com/zh/document

[2]昇腾社区在线课程:https://www.hiascend.com/zh/edu/courses

[3]昇腾论坛:https://www.hiascend.com/forum

点击关注,第一时间了解华为云新鲜技术~

昇腾迁移丨4个TensorFlow模型训练案例解读的更多相关文章

  1. TensorFlow模型部署到服务器---TensorFlow2.0

    前言 ​ 当一个TensorFlow模型训练出来的时候,为了投入到实际应用,所以就需要部署到服务器上.由于我本次所做的项目是一个javaweb的图像识别项目.所有我就想去寻找一下java调用Tenso ...

  2. ML.NET 示例:图像分类模型训练-首选API(基于原生TensorFlow迁移学习)

    ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 Microsoft.ML 1.5.0 动态API 最新 控制台应用程序和Web应用程序 图片文件 图像分类 基 ...

  3. [翻译] Tensorflow模型的保存与恢复

    翻译自:http://cv-tricks.com/tensorflow-tutorial/save-restore-tensorflow-models-quick-complete-tutorial/ ...

  4. Tensorflow模型的格式

    转载:https://cloud.tencent.com/developer/article/1009979 tensorflow模型的格式通常支持多种,主要有CheckPoint(*.ckpt).G ...

  5. 移动端目标识别(2)——使用TENSORFLOW LITE将TENSORFLOW模型部署到移动端(SSD)之TF Lite Developer Guide

    TF Lite开发人员指南 目录: 1 选择一个模型 使用一个预训练模型 使用自己的数据集重新训练inception-V3,MovileNet 训练自己的模型 2 转换模型格式 转换tf.GraphD ...

  6. 一份快速完整的Tensorflow模型保存和恢复教程(译)(转载)

    该文章转自https://blog.csdn.net/sinat_34474705/article/details/78995196 我在进行图像识别使用ckpt文件预测的时候,这个文章给我提供了极大 ...

  7. [Tensorflow]模型持久化的原理,将CKPT转为pb文件,使用pb模型预测

    文章目录 [Tensorflow]模型持久化的原理,将CKPT转为pb文件,使用pb模型预测 一.模型持久化 1.持久化代码实现 convert_variables_to_constants固化模型结 ...

  8. 学习笔记TF049:TensorFlow 模型存储加载、队列线程、加载数据、自定义操作

    生成检查点文件(chekpoint file),扩展名.ckpt,tf.train.Saver对象调用Saver.save()生成.包含权重和其他程序定义变量,不包含图结构.另一程序使用,需要重新创建 ...

  9. 移动端目标识别(1)——使用TensorFlow Lite将tensorflow模型部署到移动端(ssd)之TensorFlow Lite简介

    平时工作就是做深度学习,但是深度学习没有落地就是比较虚,目前在移动端或嵌入式端应用的比较实际,也了解到目前主要有 caffe2,腾讯ncnn,tensorflow,因为工作用tensorflow比较多 ...

  10. 搭建 MobileNet-SSD 开发环境并使用 VOC 数据集训练 TensorFlow 模型

    原文地址:搭建 MobileNet-SSD 开发环境并使用 VOC 数据集训练 TensorFlow 模型 0x00 环境 OS: Ubuntu 1810 x64 Anaconda: 4.6.12 P ...

随机推荐

  1. linux内核vmlinux的编译过程之 --- $(kallsyms.o)详解(九)

    在编译完依赖 vmlinux.o 后,链接 vmlinux 之前,构建系统还要编译依赖目标 $(kallsyms.o).接下来就对 kallsyms 进行一个简单的解释. 一. 引言 1.符号的概念 ...

  2. Redis和Mysql保持数据一致性

    1.简述   在高并发的场景下,大量的请求直接访问Mysql很容易造成性能问题.所以,我们都会用Redis来做数据的缓存,削减对数据库的请求.但是,Mysql和Redis是两种不同的数据库,如何保证不 ...

  3. Java 调用gdal API(二)——栅格裁剪

    gdal可以说是GIS数据处理比较好的工具之一,虽然也提供了Java API,但是官方文档确实太过简单,用起来确实太难受,每次都需要去参考对应的C++api,然后在对应使用. 因此小编决定从这篇文章开 ...

  4. eclipse module-info.java文件

    module 本模块的名称{ exports 对外暴露的包路径; requires 需要依赖的其他模块名称; } module-info.java不是类,不是接口,是一些模块描述信息.module也不 ...

  5. .NET技术:懒惰与沉淀的平衡之道

    在过去的很多年里,我一直默默搬砖,而我们聚在博客园,目的只有一个:沉淀并为更多的.NET开发者提供更好的帮助. 疫情3年,个人经历了太多事情,感觉懒惰是最大的敌人.然而,在这里,我收获了许多宝贵的经验 ...

  6. debian11使用kubeadm安装k8s

    前言 节点信息: master1:192.168.0.33 node1:192.168.0.31 node2:192.168.0.32 版本: 系统:debian11 64bit linux内核:5. ...

  7. java入门2..0

    java的运行原理 1.在本地磁盘中创建一个文本文件为Demo.java的源文件 2.在源文件中编写java代码如下: public class Demo public static void ,ma ...

  8. 深入理解MySQL:数据类型、查询优化、索引、事务处理和数据备份与恢复

    摘要: MySQL 是一种常用的关系型数据库管理系统,对于开发者和数据库管理员来说,掌握 MySQL 的关键概念和最佳实践非常重要.本文将围绕 MySQL 的数据类型.查询优化.索引.事务处理以及数据 ...

  9. selenium-wire兼容selenium和requests

    背景 在工作中UI自动化中可能会需要用到API来做一些数据准备或清理的事情,那UI操作是略低效的,但API操作相对高效. 而实战课就有这样一个案例,不过那个案例是UI操作和API分开的. 极少会遇到这 ...

  10. Linux下MySQL备份指定数据库命令

    比如我们要备份mysql中已经存在的名为linux的数据库,要用到命令mysqldump 命令格式如下: [root@linuxsir01 root]# mysqldump -u root -p li ...