#NTT,原根#洛谷 3321 JZOJ 4051 [SDOI2015]序列统计
分析
首先朴素dp方程
设\(dp[i][j]\)表示\(i\)个数的数列乘积为\(j\)的方案
那么\(dp[i][j*a[k]\bmod m]=itself+dp[i-1][j]\)
这可以用矩阵乘法优化到\(O(m^3log_2n)\),然而考场真的不想写
其实这个方程不明显,考虑到\(n\)超级大,不是矩阵乘法就是快速幂(推测)
能不能用2的多少次方拼凑出长度为\(n\)的数列
刚刚的方程可以变为$$dp[2i][t]=\sum_{xy\bmod m==t}dp[i][x]+dp[i][y]$$
那乘法怎么办呢,用原根把乘法变成加法,那就可以用NTT做了
至于原根我不好解释,但是原根会比较小,
具体做法就是\(g^k\neq 1(k|p-1)\)那么\(g\)就是\(p\)的一个原根(准确来说应该是\(\varphi(p)\),但是这里是质数)
代码
#include <cstdio>
#include <cctype>
#include <algorithm>
#define rr register
using namespace std;
const int mod=1004535809,invG=334845270,N=8011;
int n,r[N<<2],inv1,inv2,m,G,F[N<<2],Ans[N<<2],fi[N],KsM,S,X;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline signed ksm(int x,int y,int p){
rr int ans=1;
for (;y;y>>=1,x=1ll*x*x%p)
if (y&1) ans=1ll*ans*x%p;
return ans;
}
inline signed Getroot(int p){
for (rr int g=2;;++g){
rr bool flag=1;
for (rr int i=2;i*i<p;++i)
if ((p-1)%i==0&&(ksm(g,i,p)==1||ksm(g,(p-1)/i,p)==1)) flag=0;
if (flag) return g;
}
}
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline void ntt(int *f,int op){
for (rr int i=0;i<n;++i)
if (i<r[i]) swap(f[i],f[r[i]]);
for (rr int p=2;p<=n;p<<=1){
rr int len=p>>1,w=ksm(op==1?3:invG,(mod-1)/p,mod);
for (rr int i=0;i<n;i+=p)
for (rr int j=i,t=1;j<i+len;++j,t=1ll*t*w%mod){
rr int z=1ll*f[len+j]*t%mod;
f[len+j]=mo(f[j],mod-z),f[j]=mo(f[j],z);
}
}
}
inline void cheng(int *c,int *a,int *b){
rr int f[N<<2],g[N<<2],C[N<<2];
for (rr int i=0;i<n;++i) f[i]=a[i],g[i]=b[i];
ntt(f,1),ntt(g,1); for (rr int i=0;i<n;++i) f[i]=1ll*f[i]*g[i]%mod;
ntt(f,-1); for (rr int i=0;i<n;++i) f[i]=1ll*f[i]*inv1%mod;
for (rr int i=0;i<m-1;++i) C[i]=mo(f[i],f[i+m-1]);
for (rr int i=0;i<n;++i) c[i]=C[i];
}
signed main(){
KsM=iut(),m=iut(),X=iut(),S=iut(),G=Getroot(m),fi[1]=0;
for (rr int i=1,t=1;i<m-1;++i) fi[t=t*G%m]=i;
for (rr int i=1;i<=S;++i){
rr int t=iut();
if (t) ++F[fi[t]];
}
Ans[0]=1;
for (n=1;n<=2*m-2;n<<=1); inv1=ksm(n,mod-2,mod);
for (rr int i=0;i<n;++i) r[i]=(r[i>>1]>>1)|((i&1)?n>>1:0);
for (;KsM;KsM>>=1,cheng(F,F,F)) if (KsM&1) cheng(Ans,Ans,F);
printf("%d",Ans[fi[X]]);
return 0;
}
#NTT,原根#洛谷 3321 JZOJ 4051 [SDOI2015]序列统计的更多相关文章
- 【洛谷3321_BZOJ3992】[SDOI2015]序列统计(原根_多项式)
题目: 洛谷3321 分析: 一个转化思路比较神(典型?)的题-- 一个比较显然的\(O(n^3)\)暴力是用\(f[i][j]\)表示选了\(i\)个数,当前积在模\(m\)意义下为\(j\)的方案 ...
- [BZOJ3992][SDOI2015]序列统计(DP+原根+NTT)
3992: [SDOI2015]序列统计 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1888 Solved: 898[Submit][Statu ...
- [SDOI2015]序列统计(NTT+求原根)
题目 [SDOI2015]序列统计 挺好的题!!! 做法 \(f[i][j]\)为第\(i\)个数前缀积在模\(M\)意义下为\(j\) 显然是可以快速幂的:\[f[2*i][j]=\sum\limi ...
- 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂
[BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...
- BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂
3992: [SDOI2015]序列统计 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1155 Solved: 532[Submit][Statu ...
- BZOJ 3992: [SDOI2015]序列统计 快速幂+NTT(离散对数下)
3992: [SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S ...
- 【LG3321】[SDOI2015]序列统计
[LG3321][SDOI2015]序列统计 题面 洛谷 题解 前置芝士:原根 我们先看一下对于一个数\(p\),它的原根\(g\)有什么性质(好像就是定义): \(g^0\%p,g^1\%p,g^2 ...
- [SDOI2015]序列统计
[SDOI2015]序列统计 标签: NTT 快速幂 Description 给你一个模m意义下的数集,需要用这个数集生成一个数列,使得这个数列在的乘积为x. 问方案数模\(1004535809\). ...
- 3992: [SDOI2015]序列统计
3992: [SDOI2015]序列统计 链接 分析: 给定一个集和s,求多少个长度为n的序列,满足序列中每个数都属于s,并且所有数的乘积模m等于x. 设$f=\sum\limits_{i=0}^{n ...
- [BZOJ 3992][SDOI2015]序列统计
3992: [SDOI2015]序列统计 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 2275 Solved: 1090[Submit][Stat ...
随机推荐
- 探秘C语言数组:解锁高效数据管理与多维空间编程技巧"
欢迎大家来到贝蒂大讲堂 养成好习惯,先赞后看哦~ 所属专栏:C语言学习 贝蒂的主页:Betty's blog 引言 前面贝蒂给大家介绍了选择结构与循环结构,今天,贝蒂准备给大家介绍C语言中一个非常重要 ...
- Redis集群单机环境搭建
概述 目标:在单台物理机上搭建3主3从共6个节点的Redis集群. 版本:Redis 6.2.4 系统:Ubuntu 18.04 Desktop(IP地址:192.168.100.247) 准备工作 ...
- C++异常的基本概念与用法
//异常的概念/*抛出异常后必须要捕获,否则终止程序(到最外层后会交给main管理,main的行为就是终止) try{}内写可能会抛出异常的代码.catch(类型){处理} 写异常类型和异常处理 抛出 ...
- 这波操作看麻了!十亿行数据,从71s到1.7s的优化之路。
你好呀,我是歪歪. 春节期间关注到了一个关于 Java 方面的比赛,很有意思.由于是开源的,我把项目拉下来试图学(白)习(嫖)别人的做题思路,在这期间一度让我产生了一个自我怀疑: 他们写的 Java ...
- 简单配置Sql专家云
一.实例配置 1.添加实例 点击全面诊断实例配置,右上角点击添加. 2.填写实例信息 根据下图填写对应的信息,连接测试成功后点击保存. 3.添加完成 4.修改实例 找到对应的实例,点击下图蓝色框修改即 ...
- 50条MAUI踩坑记
1. 目录结构: (1)_imports.razor是一个全局using namespace的地方 (2)Platforms下的代码,虽然都放在同一个项目下,但是Platforms\Android下的 ...
- Android Studio 有关 setOnClickListener() 方法的总结
•前言 在 Android Studio 开发中,你会经常和这种代码打交道: 1 package com.example.activitytest; 2 public class FirstActiv ...
- Django进阶之路由层和视图层
Django的路由系统 [1]什么是URL配置(URLconf) URL调度器 | Django 文档 | Django (djangoproject.com) URL配置(URLconf)就像Dja ...
- 聊聊CWE 4.14 与 ISA/IEC 62443中,如何保障工业软件的安全性
本文分享自华为云社区<CWE 4.14 与 ISA/IEC 62443>,作者:Uncle_Tom. 1. 序言 随着 5G 的应用,物联的网发展,越来越多的自动化控制系统.云服务在工业控 ...
- react 中 动态添加 class,防止图片 重复加载, 主要是 background-image的二次加载会有新请求,和图片的闪烁
react 中 动态添加 class,防止图片 重复加载, 主要是 background-image的二次加载会有新请求,和图片的闪烁 let imageTopBg if (imgSrcBg) { c ...