本篇博客的图源来自 zhwhong,转载仅作学习使用!

在分类任务中,人们总是喜欢基于错误率来衡量分类器任务的成功程度。错误率指的是在所有测试样例中错分的样例比例。实际上,这样的度量错误掩盖了样例如何被分错的事实。在机器学习中,有一个普遍适用的称为混淆矩阵(confusion matrix)的工具,它可以帮助人们更好地了解分类中的错误。

比如有这样一个在房子周围可能发现的动物类型的预测,这个预测的三类问题的混淆矩阵如下表所示:

利用混淆矩阵可以充分理解分类中的错误了。如果混淆矩阵中的非对角线元素均为0,就会得到一个近乎完美的分类器。

在接下来的讨论中,将以经典的二分类问题为例,对于多分类类比推断。

二分类问题在机器学习中是一个很常见的问题,经常会用到。ROC (Receiver Operating Characteristic) 曲线和 AUC (Area Under the Curve) 值常被用来评价一个二值分类器 (binary classifier) 的优劣。之前做医学图像计算机辅助肺结节检测时,在评定模型预测结果时,就用到了ROC和AUC,这里简单介绍一下它们的特点,以及更为深入地,讨论如何作出ROC曲线图和计算AUC值。

概念剧透:(摘自 The Relationship Between Precision-Recall and ROC Curves)

上面四个指标用大白话解释如下

  • Recall:查全率,正样本中被预测出来是正的比例(越大越好)
  • Precision:查准率,预测的正样本中被正确预测的比例(越大越好)
  • True Positive Rate:跟 Recall 定义一样 (越大越好)
  • FPR : 负样本中被预测为正的比例(越小越好)

接下来用一个医学图像识别的实例来详细介绍!

一、医学图像识别二分类问题

针对一个二分类问题,我们将实例分成正类(positive)和负类(negative)两种。

例如:在肺结节计算机辅助识别这一问题上,一幅肺部CT图像中有肺结节被认为是阳性(positive),没有肺结节被认为是阴性(negative)。对于部分有肺结节的示意图如下:

所以在实际检测时,就会有如下四种情况:

(1) 真阳性(True Positive,TP):检测有结节,且实际有结节;正确肯定的匹配数目;

(2) 假阳性(False Positive,FP):检测有结节,但实际无结节;误报,给出的匹配是不正确的;

(3) 真阴性(True Negative,TN):检测无结节,且实际无结节;正确拒绝的非匹配数目;

(4) 假阴性(False Negative,FN):检测无结节,但实际有结节;漏报,没有正确找到的匹配的数目。

详细图解如下:

上图中涉及到很多相关概念及参数,详细请见Wiki上的定义及其混淆矩阵

这里整理肺结节识别中的几个主要参数指标如下:

\[\text { Precision }=\frac{T P}{T P+F P}
\]
\[\text { Sensitivity }=\text { Recall }=T P R=\frac{T P}{T P+F N}
\]
\[\text { Specificity }=T N R=\frac{T N}{F P+T N}
\]
  • 假阴性率(False Negatice Rate,FNR),漏诊率( = 1 - 灵敏度):
\[F N R=\frac{F N}{T P+F N}
\]
  • 假阳性率(False Positice Rate,FPR),误诊率( = 1 - 特异度):
\[F P R=\frac{F P}{FP + TN}
\]
\[L R+=\frac{T P R}{F P R}=\frac{\text { Sensitivity }}{1-\text { Specificity }}
\]
\[L R-=\frac{F N R}{T N R}=\frac{\text {1 - Sensitivity }}{\text { Specificity }}
\]
\[\text { Youden index }=\text { Sensitivity }+\text { Specificity }-1=T P R-F P R
\]

二、ROC曲线

ROC曲线:接收者操作特征曲线(receiver operating characteristic curve),是反映敏感性和特异性连续变量的综合指标,roc曲线上每个点反映着对同一信号刺激的感受性。

对于分类器或者说分类算法,评价指标主要有precisionrecallF1 score等,以及这里要讨论的ROCAUC。下图是一个ROC曲线的示例:

  • 横坐标:1-Specificity,伪正类率(False positive rate, FPR),预测为正但实际为负的样本占所有负例样本 的比例;
  • 纵坐标:Sensitivity,真正类率(True positive rate, TPR),预测为正且实际为正的样本占所有正例样本 的比例。

在一个二分类模型中,假设采用逻辑回归分类器,其给出针对每个实例为正类的概率,那么通过设定一个阈值如0.6,概率大于等于0.6的为正类,小于0.6的为负类。对应的就可以算出一组(FPR,TPR),在平面中得到对应坐标点。随着阈值的逐渐减小,越来越多的实例被划分为正类,但是这些正类中同样也掺杂着真正的负实例,即TPR和FPR会同时增大。阈值最大时,对应坐标点为(0,0),阈值最小时,对应坐标点(1,1)。

如下面这幅图,(a)图中实线为ROC曲线,线上每个点对应一个阈值。

(a) 理想情况下,TPR应该接近1,FPR应该接近0。ROC曲线上的每一个点对应于一个threshold,对于一个分类器,每个threshold下会有一个TPR和FPR。比如Threshold最大时,TP=FP=0,对应于原点;Threshold最小时,TN=FN=0,对应于右上角的点(1,1)。

(b) P和N得分不作为特征间距离d的一个函数,随着阈值theta增加,TP和FP都增加。

  • 横轴FPR:1-TNR,1-Specificity,FPR越大,预测正类中实际负类越多。
  • 纵轴TPR:Sensitivity(正类覆盖率),TPR越大,预测正类中实际正类越多。
  • 理想目标:TPR=1,FPR=0,即图中(0,1)点,故ROC曲线越靠拢(0,1)点,越偏离45度对角线越好,Sensitivity、Specificity越大效果越好。

随着阈值threshold调整,ROC坐标系里的点如何移动可以参考:

三、如何画ROC曲线

对于一个特定的分类器和测试数据集,显然只能得到一个分类结果,即一组FPR和TPR结果,而要得到一个曲线,我们实际上需要一系列FPR和TPR的值,这又是如何得到的呢?我们先来看一下Wikipedia上对ROC曲线的定义

In signal detection theory, a receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot which illustrates the performance of a binary classifier system as its discrimination threshold is varied.

问题在于“as its discrimination threashold is varied”。如何理解这里的“discrimination threashold”呢?我们忽略了分类器的一个重要功能“概率输出”,即表示分类器认为某个样本具有多大的概率属于正样本(或负样本)。通过更深入地了解各个分类器的内部机理,我们总能想办法得到一种概率输出。通常来说,是将一个实数范围通过某个变换映射到(0,1)区间。

假如我们已经得到了所有样本的概率输出(属于正样本的概率),现在的问题是如何改变“discrimination threashold”?我们根据每个测试样本属于正样本的概率值从大到小排序。下图是一个示例,图中共有20个测试样本,“Class”一栏表示每个测试样本真正的标签(p表示正样本,n表示负样本),“Score”表示每个测试样本属于正样本的概率。

接下来,我们从高到低,依次将“Score”值作为阈值threshold,当测试样本属于正样本的概率大于或等于这个threshold时,我们认为它为正样本,否则为负样本。举例来说,对于图中的第4个样本,其“Score”值为0.6,那么样本1,2,3,4都被认为是正样本,因为它们的“Score”值都大于等于0.6,而其他样本则都认为是负样本。每次选取一个不同的threshold,我们就可以得到一组FPR和TPR,即ROC曲线上的一点。这样一来,我们一共得到了20组FPR和TPR的值,将它们画在ROC曲线的结果如下图:

当我们将threshold设置为1和0时,分别可以得到ROC曲线上的(0,0)和(1,1)两个点。将这些(FPR,TPR)对连接起来,就得到了ROC曲线。当threshold取值越多,ROC曲线越平滑。

其实,我们并不一定要得到每个测试样本是正样本的概率值,只要得到这个分类器对该测试样本的“评分值”即可(评分值并不一定在(0,1)区间)。评分越高,表示分类器越肯定地认为这个测试样本是正样本,而且同时使用各个评分值作为threshold。我认为将评分值转化为概率更易于理解一些。

四、AUC

AUC值的计算

AUC (Area Under Curve) 被定义为ROC曲线下的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围一般在0.5和1之间。使用AUC值作为评价标准是因为很多时候ROC曲线并不能清晰的说明哪个分类器的效果更好,而作为一个数值,对应AUC更大的分类器效果更好。

AUC的计算有两种方式,梯形法和ROC AUCH法,都是以逼近法求近似值,具体见wikipedia

AUC意味着什么

那么AUC值的含义是什么呢?根据(Fawcett, 2006),AUC的值的含义是:

The AUC value is equivalent to the probability that a randomly chosen positive example is ranked higher than a randomly chosen negative example.

这句话有些绕,我尝试解释一下:首先AUC值是一个概率值,当你随机挑选一个正样本以及一个负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值。当然,AUC值越大,当前的分类算法越有可能将正样本排在负样本前面,即能够更好的分类。

从AUC判断分类器(预测模型)优劣的标准:

  • AUC = 1,是完美分类器,采用这个预测模型时,存在至少一个阈值能得出完美预测。绝大多数预测的场合,不存在完美分类器。
  • 0.5 < AUC < 1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
  • AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。
  • AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。

三种AUC值示例:

简单说:AUC值越大的分类器,正确率越高

为什么使用ROC曲线

既然已经这么多评价标准,为什么还要使用ROC和AUC呢?因为ROC曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化。下图是ROC曲线和Precision-Recall曲线的对比:

在上图中,(a)和(c)为ROC曲线,(b)和(d)为Precision-Recall曲线。(a)和(b)展示的是分类其在原始测试集(正负样本分布平衡)的结果,(c)和(d)是将测试集中负样本的数量增加到原来的10倍后,分类器的结果。可以明显的看出,ROC曲线基本保持原貌,而Precision-Recall曲线则变化较大。


Reference

机器学习 | 分类性能度量指标 : ROC曲线、AUC值、正确率、召回率的更多相关文章

  1. 机器学习性能度量指标:ROC曲线、查准率、查全率、F1

    错误率 在常见的具体机器学习算法模型中,一般都使用错误率来优化loss function来保证模型达到最优. \[错误率=\frac{分类错误的样本}{样本总数}\] \[error=\frac{1} ...

  2. 机器学习:分类算法性能指标之ROC曲线

    在介绍ROC曲线之前,先说说混淆矩阵及两个公式,因为这是ROC曲线计算的基础. 1.混淆矩阵的例子(是否点击广告): 说明: TP:预测的结果跟实际结果一致,都点击了广告. FP:预测结果点击了,但是 ...

  3. 机器学习性能度量指标:AUC

    在IJCAI 于2015年举办的竞赛:Repeat Buyers Prediction Competition 中, 很多参赛队伍在最终的Slides展示中都表示使用了 AUC 作为评估指标:     ...

  4. 机器学习实战笔记(Python实现)-07-模型评估与分类性能度量

    1.经验误差与过拟合 通常我们把分类错误的样本数占样本总数的比例称为“错误率”(error rate),即如果在m个样本中有a个样本分类错误,则错误率E=a/m:相应的,1-a/m称为“精度”(acc ...

  5. 机器学习实战笔记(Python实现)-07-分类性能度量指标

    1.混淆矩阵 下图是一个二类问题的混淆矩阵,其中的输出采用了不同的类别标签 常用的衡量分类性能的指标有: 正确率(Precision),它等于 TP/(TP+FP) ,给出的是预测为正例的样本中的真正 ...

  6. 【sklearn】性能度量指标之ROC曲线(二分类)

    原创博文,转载请注明出处! 1.ROC曲线介绍 ROC曲线适用场景 二分类任务中,positive和negtive同样重要时,适合用ROC曲线评价 ROC曲线的意义 TPR的增长是以FPR的增长为代价 ...

  7. 机器学习常用性能度量中的Accuracy、Precision、Recall、ROC、F score等都是些什么东西?

    一篇文章就搞懂啦,这个必须收藏! 我们以图片分类来举例,当然换成文本.语音等也是一样的. Positive 正样本.比如你要识别一组图片是不是猫,那么你预测某张图片是猫,这张图片就被预测成了正样本. ...

  8. scikit-learn机器学习(二)逻辑回归进行二分类(垃圾邮件分类),二分类性能指标,画ROC曲线,计算acc,recall,presicion,f1

    数据来自UCI机器学习仓库中的垃圾信息数据集 数据可从http://archive.ics.uci.edu/ml/datasets/sms+spam+collection下载 转成csv载入数据 im ...

  9. 机器学习之分类器性能指标之ROC曲线、AUC值

    分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性 ...

  10. 基于mnist的P-R曲线(准确率,召回率)

    一.准确率,召回率 TP(True Positive):正确的正例,一个实例是正类并且也被判定成正类 FN(False Negative):错误的反例,漏报,本为正类但判定为假类 FP(False P ...

随机推荐

  1. 4个LED流水灯

    #include "reg52.h" //此文件中定义了单片机的一些特殊功能寄存器 #include<intrins.h> //因为要用到左右移函数,所以加入这个头文件 ...

  2. .NET8顶级调试lldb观察FOH堆字符串分配

    前言 好久没有动用LLDB了,这种未来的下一代高性能调试器应该是用在Linux内核系统的Arm64/Riscv64/X64系统指令集上的,LLDB Debug .NET有点杀鸡用牛刀.本篇通过它来看下 ...

  3. RocksDB 在 vivo 消息推送系统中的实践

    作者:vivo 互联网服务器团队 - Zeng Luobin 本文主要介绍了 RocksDB 的基础原理,并阐述了 RocksDB 在vivo消息推送系统中的一些实践,通过分享一些对 RocksDB ...

  4. SpringBoot项目整合微信登录

    一.开通微信登录 去微信开发者平台 1.注册 2.邮箱激活 3.完善开发者资料 4.开发者资质认证 准备营业执照,1-2个工作日审批.300元 5.创建网站应用 6.提交审核,7个工作日审批 7.熟悉 ...

  5. Java并发(二十)----synchronized原理进阶

    1.小故事 故事角色 老王 - JVM 小南 - 线程 小女 - 线程 房间 - 对象 房间门上 - 防盗锁 - Monitor-重量级锁 房间门上 - 小南书包 - 轻量级锁 房间门上 - 刻上小南 ...

  6. bash shell笔记整理——basename和dirname命令

    bashname命令作用 去掉给定name的目录部分,如果指定了 SUFFIX, 就 同时去掉SUFFIX(后缀).具体看示例吧. bashname语法 Usage: basename NAME [S ...

  7. OpenWRT的TTYD终端显示已拒绝连接

    更改openwrt软路由后台管理地址后,发现TTYD终端无法连接,显示已拒绝连接,无法使用的解决方法. 解决方法: 1.使用puty工具连接软路由 2.编辑ttyd配置文件 root@OpenWrt: ...

  8. 技本功|Hive优化之监控(三)

    Hive是大数据领域常用的组件之一,主要是大数据离线数仓的运算,关于Hive的性能调优在日常工作和面试中是经常涉及的一个点,因此掌握一些Hive调优是必不可少的技能.影响Hive效率的主要有数据倾斜. ...

  9. 占位图片(Placeholder Image)

    一.引言 在网页设计和开发中,占位图片(Placeholder Image)是一种常见的技术手段,用于在用户上传图片之前或者图片加载失败时,展示一个临时替代的图片,以提高用户体验.本文将详细介绍占位图 ...

  10. spring-mvc 系列:获取请求参数(ServletAPI、形参、RequestParam、RequestHeader、CookieValue、POJO等方式)

    目录 一.通过 ServletAPI 获取 二.通过控制器方法的形参获取请求参数 三.@RequestParam 四.@RequestHeader 五.@CookieValue 六.通过 POJO 获 ...