matplotlib API函数都位于matplotlib.pyplot模块中。

本节代码中引入的约定为:import matplotlib.pyplot as plt

numpy库也会用到,约定:import numpy as np

pandas库也会用到,约定:import pandas as pd

2 pandas中的绘图

matplotlib是一种比较低级的工具,要组装一张图表,你得用它得各种基础组件才行:数据展示(即图表类型:线型图、柱状图、盒型图、散布图、等值线图等)、图例、标题、刻度标签以及其它注释型信息。

在pandas中,有行标签、列标签及分组信息,要绘制一张图,需要很多matplotlib代码。pandas有很多能够利用DataFrame对象数据组织特点来创建标准图表的高级绘图方法。

2.1 线型图

Series和DataFrame都有一个用于生成各类图表的plot方法,默认情况下,生成的是线型图。

1 >>> s = pd.Series(np.random.randn(10).cumsum(), index=np.arange(0, 100, 10))
2 >>> s.plot()
3 <matplotlib.axes._subplots.AxesSubplot object at 0x0000024F35B8A898>
4 >>> plt.show()

该Series对象的索引会传给matplotlib,并用以绘制X轴,可通过use_index=False禁用该功能。X轴的刻度和界限可以通过xticks和xlim选项进行调节,Y轴就用yticks和ylim。

官方说明:pandas.Series.plot — pandas 1.3.4 documentation (pydata.org)

plot参数完整列表如下所示:

参数 说明
label 用于图例的标签
ax 要在其上进行绘制的matplotlib subplot对象,如果没有设置,则使用当前matplotlib subplot
style 将要传给matplotlib的风格字符串(如’ko--’)
alpha 图表的填充不透明度(0到1之间)
kind 可以是’line’、’bar’、’barh’、’kde’
logy 在Y轴上使用对数标尺
use_index 将对象的的索引用作刻度标签
rot 旋转刻度标签(0到360)
xticks 用作X轴刻度的值
yticks 用作Y轴刻度的值
xlim X轴的界限(例如[0, 10])
ylim Y轴的界限
grid 显示轴网格线(默认打开)

pandas的大部分绘图方法都有一个可选的ax参数,它可以是一个matplotlib的subplot对象。

DataFrame的plot方法会在一个subplot中为各列绘制一条线,并自动创建图例。

官方说明:pandas.DataFrame.plot — pandas 1.3.4 documentation (pydata.org)

1 >>> df = pd.DataFrame(np.random.randn(10, 4).cumsum(0), columns=['A', 'B', 'C', 'D'], index=np.arange(0, 100, 10))
2 >>> df.plot()
3 <matplotlib.axes._subplots.AxesSubplot object at 0x0000024F35B8AFD0>
4 >>> plt.show()

DataFrame还有一些用于对列进行灵活处理的选项。下表是专用于DataFrame的plot参数。

参数 说明
subplots 将各个DataFrame列绘制到单独的subplot中
sharex 如果subplots=True,则共用同一个X轴,包括刻度和界限
sharey 如果subplots=True,则共用同一个Y轴
figsize 表示图像大小的元组
title 表示图像标题的字符串
legend 添加一个subplot实例(默认为True)
sort_columns 以字母顺序绘制各列,默认使用当前列顺序

2.2 柱状图

在生成线性图的代码中加上kind=’bar’(垂直柱状图)或kind=’barh’(水平柱状图)即可生成柱状图。这时,Series和DataFrame的索引将会被当作X(bar)或Y(barh)刻度。

1 >>> fig, axes = plt.subplots(2, 1)
2 >>> data = pd.Series(np.random.rand(16), index=list('abcdefghijklmnop'))
3 >>> data.plot(kind='bar', ax=axes[0], color='k', alpha=0.7)
4 <matplotlib.axes._subplots.AxesSubplot object at 0x0000024F37F3FE48>
5 >>> data.plot(kind='barh', ax=axes[1], color='k', alpha=0.7)
6 <matplotlib.axes._subplots.AxesSubplot object at 0x0000024F37F794A8>
7 >>> plt.show()

对于DataFrame,柱状图会将每一行的值分为一组。

 1 >>> df = pd.DataFrame(np.random.rand(6, 4), index=['one', 'two', 'three', 'four', 'five', 'six'], columns=pd.Index(['A', 'B', 'C', 'D'], name='Genus'))
2 >>> df
3 Genus A B C D
4 one 0.466419 0.388390 0.045920 0.188829
5 two 0.795635 0.566636 0.916473 0.944628
6 three 0.386224 0.993829 0.273204 0.573622
7 four 0.134991 0.591803 0.778073 0.150384
8 five 0.854561 0.058758 0.922147 0.764897
9 six 0.923109 0.324739 0.717597 0.682992
10 >>> df.plot(kind='bar')
11 <matplotlib.axes._subplots.AxesSubplot object at 0x0000024F37FB1F28>
12 >>> plt.show()

设置stacked=True即可生成堆积柱状图,每行的值会被堆积在一起。

1 >>> df.plot(kind='bar', stacked=True, alpha=0.5)
2 <matplotlib.axes._subplots.AxesSubplot object at 0x0000024F3A2F2048>
3 >>> plt.show()

2.3 直方图和密度图

直方图(histogram)是一种可以对值频率进行离散化显示的柱状图。数据点被拆分到离散的、间隔均匀的面元中,绘制的是各面元中数据点的数量。

 1 >>> s
2 0 -0.674014
3 1 0.342018
4 2 -0.189962
5 3 0.528294
6 4 1.597546
7 5 1.530765
8 6 2.699712
9 7 1.422388
10 8 -1.295660
11 9 -1.539913
12 dtype: float64
13 >>> s.hist(bins=5)
14 <matplotlib.axes._subplots.AxesSubplot object at 0x000002295B737978>
15 >>> plt.show()

与此相关的一种图表类型是密度图,它是通过计算“可能产生观测数据的连续概率分布的估计”而产生的。一般的过程是将该部分近似为一组核(即诸如正态(高斯)分布之类的较为简单的分布)。因此,密度图也被称为KDE(kernel density estimate核密度估计)图。调用plot时加上kind=’kde’即可生成一张密度图(标准混合正态分布KDE)。

 1 >>> import scipy
2 >>> s.plot(kind='kde')
3 <matplotlib.axes._subplots.AxesSubplot object at 0x0000022959D0DA90>
4 >>> plt.show()
5 >>> s
6 0 -0.674014
7 1 0.342018
8 2 -0.189962
9 3 0.528294
10 4 1.597546
11 5 1.530765
12 6 2.699712
13 7 1.422388
14 8 -1.295660
15 9 -1.539913
16 dtype: float64

这两种图形常常画在一起,直方图以规格化形式给出(以便给出画元化密度),然后再在其上绘制核密度估计。下面给一个由两个不同的标准正态分布组成的双峰分布。

1 >>> comp1 = np.random.normal(0, 1, size=200)
2 >>> comp2 = np.random.normal(10, 2, size=200)
3 >>> values = pd.Series(np.concatenate([comp1, comp2]))
4 >>> values.hist(bins=100, alpha=0.3, color='k', density=True)
5 <matplotlib.axes._subplots.AxesSubplot object at 0x0000022959CFC6D8>
6 >>> values.plot(kind='kde', style='k--')
7 <matplotlib.axes._subplots.AxesSubplot object at 0x0000022959CFC6D8>
8 >>> plt.show()

2.4 散布图

散布图(scatter plot)是观察两个一维数据序列之间关系的有效手段,matplotlib的scatter方法是绘制散布图的主要方法。

 1 >>> df = pd.DataFrame(np.random.rand(4, 2), index=[1, 2, 3, 4], columns=['one', 'two'])
2 >>> df
3 one two
4 1 0.658181 0.390797
5 2 0.443482 0.673915
6 3 0.188783 0.442284
7 4 0.048783 0.578914
8 >>> plt.scatter(df['one'], df['two'])
9 <matplotlib.collections.PathCollection object at 0x000002295D2D77B8>
10 >>> plt.title('test')
11 Text(0.5, 1.0, 'test')
12 >>> plt.show()

在探索式数据分析中,同时观察一组变量的散布图很有意义,这也被称为散布矩阵(scatter plot matrix)。pandas提供了从DataFrame创建散布图矩阵的scatter_matrix函数。还支持在对角线上放置各变量的直方图和密度图。

 1 >>> df
2 one two
3 1 0.658181 0.390797
4 2 0.443482 0.673915
5 3 0.188783 0.442284
6 4 0.048783 0.578914
7 >>> pd.plotting.scatter_matrix(df, diagonal='kde', color='r', alpha=0.3)
8 array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000002295D23D860>,
9 <matplotlib.axes._subplots.AxesSubplot object at 0x000002295D1A4940>],
10 [<matplotlib.axes._subplots.AxesSubplot object at 0x000002295D09EEF0>,
11 <matplotlib.axes._subplots.AxesSubplot object at 0x000002295D0DC4E0>]],
12 dtype=object)
13 >>> plt.show()

绘图与可视化--pandas中的绘图函数的更多相关文章

  1. 分位函数(四分位数)概念与pandas中的quantile函数

    p分位函数(四分位数)概念与pandas中的quantile函数 函数原型 DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpola ...

  2. 四分位数与pandas中的quantile函数

    四分位数与pandas中的quantile函数 1.分位数概念 统计学上的有分位数这个概念,一般用p来表示.原则上p是可以取0到1之间的任意值的.但是有一个四分位数是p分位数中较为有名的. 所谓四分位 ...

  3. 使用pandas中的raad_html函数爬取TOP500超级计算机表格数据并保存到csv文件和mysql数据库中

    参考链接:https://www.makcyun.top/web_scraping_withpython2.html #!/usr/bin/env python # -*- coding: utf-8 ...

  4. pandas中的quantile函数

    https://blog.csdn.net/weixin_38617311/article/details/87893168 data.price.quantile([0.25,0.5,0.75]) ...

  5. Python 数据分析(一) 本实验将学习 pandas 基础,数据加载、存储与文件格式,数据规整化,绘图和可视化的知识

    第1节 pandas 回顾 第2节 读写文本格式的数据 第3节 使用 HTML 和 Web API 第4节 使用数据库 第5节 合并数据集 第6节 重塑和轴向旋转 第7节 数据转换 第8节 字符串操作 ...

  6. 《利用python进行数据分析》读书笔记--第八章 绘图和可视化

    http://www.cnblogs.com/batteryhp/p/5025772.html python有许多可视化工具,本书主要讲解matplotlib.matplotlib是用于创建出版质量图 ...

  7. Python之绘图和可视化

    Python之绘图和可视化 1. 启用matplotlib 最常用的Pylab模式的IPython(IPython --pylab) 2. matplotlib的图像都位于Figure对象中. 可以使 ...

  8. 利用python进行数据分析之绘图和可视化

    matplotlib API入门 使用matplotlib的办法最常用的方式是pylab的ipython,pylab模式还会向ipython引入一大堆模块和函数提供一种更接近与matlab的界面,ma ...

  9. 《python for data analysis》第八章,绘图与可视化

    <利用python进行数据分析>一书的第8章,关于matplotlib库的使用,各小节的代码. # -*- coding:utf-8 -*-import numpy as npimport ...

  10. IPython绘图和可视化---matplotlib 入门

    最近总是需要用matplotlib绘制一些图,由于是新手,所以总是需要去翻书来找怎么用,即使刚用过的,也总是忘.所以,想写一个入门的教程,一方面帮助我自己熟悉这些函数,另一方面有比我还小白的新手可以借 ...

随机推荐

  1. 中国大陆地区维护的Linux操作系统

    Linux开源生态丰富,中国大陆地区基于CentOS停服,依托阿里云.腾讯云.华为云三大私营企业,相继发布了自己的开源Linux定制版,很高兴的是他们只是改个名字并没有选择闭门造车,只是官网还是很不耻 ...

  2. 深度|为什么一定要从DevOps走向BizDevOps?

    简介: 为更好地厘清波涛汹涌的数字化转型浪潮下软件产业所面对的机遇与挑战,6月29日,阿里云云效与阿里云开发者评测局栏目,联合特邀了InfoQ极客帮副总裁付晓岩.南京大学软件工程学院教授张贺.Thou ...

  3. 阿里云架构师梁旭:MES on 云盒,助力客户快速构建数字工厂

    简介: 四大优势:一站式交付.业务低延时.数据本地驻留.多工厂统一运维 2022年5月18日,在"云上数字工厂与中小企业数字化转型创新论坛"暨"鼎捷MES & 阿 ...

  4. 源码解读:KubeVela 是如何将 appfile 转换为 K8s 特定资源对象的

    简介: KubeVela 是一个简单易用又高度可扩展的云原生应用管理引擎,是基于 Kubernetes 及阿里云与微软云共同发布的云原生应用开发模型 OAM 构建.本文主要目的是探索 KubeVela ...

  5. Vineyard 加入 CNCF Sandbox,将继续瞄准云原生大数据分析领域

    简介: Vineyard 是一个专为云原生环境下大数据分析场景中端到端工作流提供内存数据共享的分布式引擎,我们很高兴宣布 Vineyard 在 2021 年 4 月 27 日被云原生基金会(CNCF) ...

  6. Quick BI产品核心功能大图(四):Quick引擎加速--十亿数据亚秒级分析

    ​简介: 随着数字化进程的深入,数据应用的价值被越来越多的企业所重视.基于数据进行决策分析是应用价值体现的重要场景,不同行业和体量的公司广泛依赖BI产品制作报表.仪表板和数据门户,以此进行决策分析. ...

  7. Snowflake如日中天是否代表Hadoop已死?大数据体系到底是什么?

    ​简介: 本文作者关涛是大数据系统领域的资深专家,在微软(互联网/Azure云事业群)和阿里巴巴(阿里云)经历了大数据发展20年过程中的后15年.本文试从系统架构的角度,就大数据架构热点,每条技术线的 ...

  8. Jaeger插件开发及背后的思考

    ​简介: 本文主要介绍Jaeger最新的插件化后端的接口以及开发方法,让大家能够一步步的根据文章完成一个Jaeger插件的开发.此外SLS也推出了对于Jaeger的支持,欢迎大家试用. 随着云原生 + ...

  9. [FE] 推荐两个能全球访问的 CDN 前端资源仓库

    https://unpkg.com/ https://cdnjs.com/ 部分资源库的版本不全. 访问速度请自行评估. Link:https://www.cnblogs.com/farwish/p/ ...

  10. C# 从控制台创建 WinUI 3 应用

    本文将告诉大家如何从控制台而不是 WinUI3 模版项目,从零一步步创建出 WinUI 3 应用 本文不是 WinUI 3 入门博客,本文将从比较基础层的方式创建出 WinUI 3 应用,适合于了解 ...