题目:

给定两个整数,被除数 dividend 和除数 divisor。将两数相除,要求不使用乘法、除法和 mod 运算符。

返回被除数 dividend 除以除数 divisor 得到的商。

整数除法的结果应当截去(truncate)其小数部分,例如:truncate(8.345) = 8 以及 truncate(-2.7335) = -2

示例 1:

输入: dividend = 10, divisor = 3
输出: 3
解释: 10/3 = truncate(3.33333..) = truncate(3) = 3
示例 2:

输入: dividend = 7, divisor = -3
输出: -2
解释: 7/-3 = truncate(-2.33333..) = -2

提示:

  • 被除数和除数均为 32 位有符号整数。
  • 除数不为 0。
  • 假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−231,  231 − 1]。本题中,如果除法结果溢出,则返回 231 − 1。

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/divide-two-integers
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解题思路:

参考各位大佬是解题思路,这里记录一下

运用的是【翻倍循环相减】法,即对除数divisor不断翻倍,找到最接近且小于被除数dividend的最大除数,然后让当前被除数减去最大除数并记录当前倍数,然后对剩余的被除数不断重复以上的操作,直至当前被除数小于除数,所有倍数求和即为商quotient。

例如:

①23 / 3

1.计算3的2x的最大值(不超过23),对3不断的翻倍,3-->6-->12-->24,此时的24超过23,即用23-12 = 11,11作为新的被除数,3 * 2 = 12;

2.计算3的2x的最大值(不超过11),对3不断的翻倍,3-->6-->12,此时的11超过6,即用11-6 = 5,5作为新的被除数,3 * 2 = 6;

3.计算3的2x的最大值(不超过5),对3不断的翻倍,3-->6,此时的6超过5,即用6-5 = 1,1作为新的被除数,3 * 2 = 3;

4.新的被除数1已经小于3了,计算结束,商为22+21+20=7,即可得知23 / 3 = 7(省略小数部分);

②97 / 5

1.计算5的2x的最大值(不超过97),对5不断的翻倍,5-->10-->20-->40-->80-->160,此时的160超过97,即用97-80 = 17,17作为新的被除数,5 * 2 = 80;

2.计算5的2x的最大值(不超过17),对5不断的翻倍,5-->10-->20,此时的20超过17,即用17-10 = 7,7作为新的被除数,5 * 2 = 10;

3.计算5的2x的最大值(不超过7),对5不断的翻倍,5-->10,此时的10超过7,即用7-5 = 2,2作为新的被除数,5 * 2 = 5;

4.新的被除数2已经小于5了,计算结束,商为2+ 21+20=19,即可得知97 / 5 = 19(省略小数部分);

再看题目结合三个提示部分,翻译过来即为:

1.不能使用long;

2.不能使用乘法、除法和 mod 运算符;

3.考虑溢出问题。

首先不使用long:在32位系统上int和long的取值范围是一样的,int取值范围:-2147483648 ~ 2147483647,long取值范围:-2147483648 ~ 2147483647,故将所有数转化到[−231, 0]来进行运算,以避免负数转正数时的溢出问题。

其次不能使用乘法、除法和 mod 运算符:那就使用加法、减法、位运算等等;

最后溢出问题:主要是被除数为 Integer.MIN_VALUE 而除数为 -1 的情况,−231  / -1 =  231,因为负数的最小值的绝对值比正数的最大值大 1,所以这样算出来会溢出,这种情况需要特殊处理。

最终解题思路分为三步:

1.对边界情况进行特殊判断;

2.将被除数和除数都转换成负数,并记录最终结果的符号;

3.逐步增大除数来逼近被除数;

代码:

 1 class Solution {
2 public int divide(int dividend, int divisor) {
3 //溢出情况
4 if(dividend == Integer.MIN_VALUE && divisor == -1){
5 return Integer.MAX_VALUE;
6 }
7 //记录结果的符号
8 int sign = -1;
9 //如果为两正或两负,即符号为正
10 if((dividend > 0 && divisor > 0) || (dividend < 0 && divisor < 0)){
11 sign = 1;
12 }
13 //将被除数和除数均转换成负数
14 dividend = dividend > 0 ? -dividend : dividend;
15 divisor = divisor > 0 ? -divisor : divisor;
16 //设置一个变量保存商的值
17 int quotient = 0;
18 //负数的比较与正数相反,模拟倍数的过程
19 while(dividend <= divisor){
20 //定义一个中间变量temp来保存过渡的除数的倍数
21 //定义一个count来记录倍数2^x
22 int temp = divisor,count = 1;
23 //temp + temp可能会导致整型溢出
24 //最小的int负数是 -2^31(0x80000000),它的一半是 -2³¹/2=-2³⁰(-1073741824)
25 //但因为是负数故 temp >= -1073741824
26 while(temp >=-1073741824 && (temp + temp >= dividend)){
27 temp += temp;
28 count += count;
29 }
30 //找新的被除数
31 dividend -= temp;
32 quotient += count;
33 }
34 return sign < 0 ? -quotient : quotient;
35
36 }
37 }

力扣29(java)-两数相除(中等)的更多相关文章

  1. Leetcode(29)-两数相除

    给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 示例 1: 输 ...

  2. 【leetcode 29】 两数相除(中等)

    题目描述 给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 整数 ...

  3. Java实现 LeetCode 29 两数相除

    29. 两数相除 给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商 ...

  4. [LeetCode] 29. Divide Two Integers 两数相除

    Given two integers dividend and divisor, divide two integers without using multiplication, division ...

  5. Leetcode 29.两数相除 By Python

    给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 示例 1: 输 ...

  6. LeetCode(29): 两数相除

    Medium! 题目描述: 给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor ...

  7. LeetCode 29 - 两数相除 - [位运算]

    题目链接:https://leetcode-cn.com/problems/divide-two-integers/description/ 给定两个整数,被除数 dividend 和除数 divis ...

  8. leetcode 29 两数相除

    问题描述 给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 示例 ...

  9. [LeetCode]29 两数相除和一个小坑点

    给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 示例 1: 输 ...

  10. [LeetCode] Divide Two Integers 两数相除

    Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...

随机推荐

  1. ESP8266 下安装esptool.py并使用esptool刷机神助手

    一 前记 在使用ESP8266模块时,通常会用到一些刷机软件.官方提供了nodemcu_flasher.ESPFlashDownloadTool.ESP8266Flasher等下载工具,但是缺少更底层 ...

  2. Android Studio自带模拟器无法访问网络问题解决

    测试APP的时候,发现Android Studio自带的模拟器访问不了百度等网站,之前一直用的好好的,觉得可能是版本的问题,也有可能是公司网络的问题(因为在家里的电脑的Android Studio的模 ...

  3. day02-自己实现Mybatis底层机制-01

    自己实现Mybatis底层机制-01 主要实现:封装SqlSession到执行器+Mapper接口和Mapper.xml+MapperBean+动态代理Mapper的方法 1.Mybatis整体架构分 ...

  4. spring mvc 给action添加事务不成功的原因

    spring springMVC ation事务管理 自己单独做了个小网站 但是发现action事务不起作用了 但是如果用service层就没问题 找了很多办法没解决 最后自己解决了 其实就是一个加载 ...

  5. FFmpeg命令行之ffmpeg调整音视频播放速度

    FFmpeg对音频.视频播放速度的调整的原理不一样.下面简单的说一下各自的原理及实现方式: 一.调整视频速率 视频的倍速主要是通过控制filter中的setpts来实现,setpts是视频滤波器通过改 ...

  6. Android 开发Day5

    展示项目 这是我的项目结构,补录的

  7. golang gc的内部优化

    今天讲一个常见的gc compiler(也就是官方版本的go编译器和runtime)在垃圾回收的扫描标记阶段做的优化. 我对这个优化的描述印象最深的是在bigcache的注释里,大致内容是如果map的 ...

  8. KingbaseES V8R6 集群运维案例 -- 脚本部署集群后ssh无法连接

    案例说明: 在kylin V10环境下,通过脚本方式部署KingbaseES V8R6集群后,发现ssh无法连接主机,通过分析发现在脚本部署过程中会对系统环境进行优化配置,在修改了/etc/ssh/s ...

  9. .NET分布式Orleans - 8 - 贪吃蛇项目实战(准备阶段)

    到目前为止,Orleans7的核心概念基本已经学完,我准备使用Orleans7做一个项目实战,来总结自己的学习效果. 项目效果 通过Orleans7来完成一个贪吃蛇游戏,要求如下: 可以多人在线玩 贪 ...

  10. 区别对比 Python、Perl、VB、Ruby、C/C++、C# .Net、PHP、Java… 等多编程语言

    1. 编程语言类型:首先,Python.C/C++.Java 都是强类型的编程语言.强类型的编程语言定义如下: 强类型的编程语言是一种强制类型定义的编程语言,即一旦某一个变量被定义类型,如果不经强制转 ...