题目:

给定两个整数,被除数 dividend 和除数 divisor。将两数相除,要求不使用乘法、除法和 mod 运算符。

返回被除数 dividend 除以除数 divisor 得到的商。

整数除法的结果应当截去(truncate)其小数部分,例如:truncate(8.345) = 8 以及 truncate(-2.7335) = -2

示例 1:

输入: dividend = 10, divisor = 3
输出: 3
解释: 10/3 = truncate(3.33333..) = truncate(3) = 3
示例 2:

输入: dividend = 7, divisor = -3
输出: -2
解释: 7/-3 = truncate(-2.33333..) = -2

提示:

  • 被除数和除数均为 32 位有符号整数。
  • 除数不为 0。
  • 假设我们的环境只能存储 32 位有符号整数,其数值范围是 [−231,  231 − 1]。本题中,如果除法结果溢出,则返回 231 − 1。

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/divide-two-integers
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解题思路:

参考各位大佬是解题思路,这里记录一下

运用的是【翻倍循环相减】法,即对除数divisor不断翻倍,找到最接近且小于被除数dividend的最大除数,然后让当前被除数减去最大除数并记录当前倍数,然后对剩余的被除数不断重复以上的操作,直至当前被除数小于除数,所有倍数求和即为商quotient。

例如:

①23 / 3

1.计算3的2x的最大值(不超过23),对3不断的翻倍,3-->6-->12-->24,此时的24超过23,即用23-12 = 11,11作为新的被除数,3 * 2 = 12;

2.计算3的2x的最大值(不超过11),对3不断的翻倍,3-->6-->12,此时的11超过6,即用11-6 = 5,5作为新的被除数,3 * 2 = 6;

3.计算3的2x的最大值(不超过5),对3不断的翻倍,3-->6,此时的6超过5,即用6-5 = 1,1作为新的被除数,3 * 2 = 3;

4.新的被除数1已经小于3了,计算结束,商为22+21+20=7,即可得知23 / 3 = 7(省略小数部分);

②97 / 5

1.计算5的2x的最大值(不超过97),对5不断的翻倍,5-->10-->20-->40-->80-->160,此时的160超过97,即用97-80 = 17,17作为新的被除数,5 * 2 = 80;

2.计算5的2x的最大值(不超过17),对5不断的翻倍,5-->10-->20,此时的20超过17,即用17-10 = 7,7作为新的被除数,5 * 2 = 10;

3.计算5的2x的最大值(不超过7),对5不断的翻倍,5-->10,此时的10超过7,即用7-5 = 2,2作为新的被除数,5 * 2 = 5;

4.新的被除数2已经小于5了,计算结束,商为2+ 21+20=19,即可得知97 / 5 = 19(省略小数部分);

再看题目结合三个提示部分,翻译过来即为:

1.不能使用long;

2.不能使用乘法、除法和 mod 运算符;

3.考虑溢出问题。

首先不使用long:在32位系统上int和long的取值范围是一样的,int取值范围:-2147483648 ~ 2147483647,long取值范围:-2147483648 ~ 2147483647,故将所有数转化到[−231, 0]来进行运算,以避免负数转正数时的溢出问题。

其次不能使用乘法、除法和 mod 运算符:那就使用加法、减法、位运算等等;

最后溢出问题:主要是被除数为 Integer.MIN_VALUE 而除数为 -1 的情况,−231  / -1 =  231,因为负数的最小值的绝对值比正数的最大值大 1,所以这样算出来会溢出,这种情况需要特殊处理。

最终解题思路分为三步:

1.对边界情况进行特殊判断;

2.将被除数和除数都转换成负数,并记录最终结果的符号;

3.逐步增大除数来逼近被除数;

代码:

 1 class Solution {
2 public int divide(int dividend, int divisor) {
3 //溢出情况
4 if(dividend == Integer.MIN_VALUE && divisor == -1){
5 return Integer.MAX_VALUE;
6 }
7 //记录结果的符号
8 int sign = -1;
9 //如果为两正或两负,即符号为正
10 if((dividend > 0 && divisor > 0) || (dividend < 0 && divisor < 0)){
11 sign = 1;
12 }
13 //将被除数和除数均转换成负数
14 dividend = dividend > 0 ? -dividend : dividend;
15 divisor = divisor > 0 ? -divisor : divisor;
16 //设置一个变量保存商的值
17 int quotient = 0;
18 //负数的比较与正数相反,模拟倍数的过程
19 while(dividend <= divisor){
20 //定义一个中间变量temp来保存过渡的除数的倍数
21 //定义一个count来记录倍数2^x
22 int temp = divisor,count = 1;
23 //temp + temp可能会导致整型溢出
24 //最小的int负数是 -2^31(0x80000000),它的一半是 -2³¹/2=-2³⁰(-1073741824)
25 //但因为是负数故 temp >= -1073741824
26 while(temp >=-1073741824 && (temp + temp >= dividend)){
27 temp += temp;
28 count += count;
29 }
30 //找新的被除数
31 dividend -= temp;
32 quotient += count;
33 }
34 return sign < 0 ? -quotient : quotient;
35
36 }
37 }

力扣29(java)-两数相除(中等)的更多相关文章

  1. Leetcode(29)-两数相除

    给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 示例 1: 输 ...

  2. 【leetcode 29】 两数相除(中等)

    题目描述 给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 整数 ...

  3. Java实现 LeetCode 29 两数相除

    29. 两数相除 给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商 ...

  4. [LeetCode] 29. Divide Two Integers 两数相除

    Given two integers dividend and divisor, divide two integers without using multiplication, division ...

  5. Leetcode 29.两数相除 By Python

    给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 示例 1: 输 ...

  6. LeetCode(29): 两数相除

    Medium! 题目描述: 给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor ...

  7. LeetCode 29 - 两数相除 - [位运算]

    题目链接:https://leetcode-cn.com/problems/divide-two-integers/description/ 给定两个整数,被除数 dividend 和除数 divis ...

  8. leetcode 29 两数相除

    问题描述 给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 示例 ...

  9. [LeetCode]29 两数相除和一个小坑点

    给定两个整数,被除数 dividend 和除数 divisor.将两数相除,要求不使用乘法.除法和 mod 运算符. 返回被除数 dividend 除以除数 divisor 得到的商. 示例 1: 输 ...

  10. [LeetCode] Divide Two Integers 两数相除

    Divide two integers without using multiplication, division and mod operator. If it is overflow, retu ...

随机推荐

  1. Istio中的核心资源及定义

    Istio 的核心资源主要包括以下几种: 1. Gateway 用于建模边缘网关,可以为进入或离开网格的流量提供专用的入口和出口点.Gateway 定义了在网格边缘运行的负载均衡器,用于接收传入或传出 ...

  2. 谈谈Android中的消息提示那些坑

    Android中的消息提示无非就那几种,弹个窗(Toast或SnackBar),或者是弹出个对话框(Dialog),最近在使用的时候也是遇到了问题,有时候导致APP闪退 稍微研究会,总结了一下使用过程 ...

  3. java基础之字符串转日期

    package com.iamzken.utils; import java.text.ParseException; import java.text.SimpleDateFormat; impor ...

  4. jQury(事件及其他方法)

    一. jQuery 事件注册 单个事件注册 语法: element.事件(function(){}) $("div").click(function(){ 事件处理程序 }) 其他 ...

  5. 工作记录:TypeScript从入门到项目实战(项目篇)

    Vue项目中使用 前面两篇介绍过TypeScript基础和较深入的东西,本章介绍如何在Vue项目中使用. 项目创建 创建项目直接使用Vue-cli创建 下面是步骤: 1.运行vuecli, 2.选择合 ...

  6. 记录--你还在傻傻的npm run serve吗?快来尝尝这个!

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 背景 大家在日常开发中应该经常会有需要切换不同环境地址的情况.当一个项目代码切换环境地址时,vue-cli没有能够感知文件的变化,所以代理 ...

  7. 神经网络——基于sklearn的参数介绍及应用

    一.MLPClassifier&MLPRegressor参数和方法 参数说明(分类和回归参数一致): hidden_layer_sizes :例如hidden_layer_sizes=(50, ...

  8. 在Centos7上安装Redis6

    一.背景 Redis是一个非常流行的NOSQL数据库,拥有的数据类型非常丰富,此处我们简单记录一下在Centos7上是如何安装Redis6的.Redis的安装是推荐使用源码进行安装的. 二.安装步骤 ...

  9. AI+软件工程:10倍提效!用ChatGPT编写系统功能文档

    系统功能文档是一种描述软件系统功能和操作方式的文档.它让开发团队.测试人员.项目管理者.客户和最终用户对系统行为有清晰.全面的了解. 通过ChatGPT,我们能让编写系统功能文档的效率提升10倍以上. ...

  10. kingbaseES sql 优化技巧汇总

    1.整体思路 针对业务系统的出现的慢sql 我们的优化步骤大概分为以下几步 1.识别高负载语句 2.收集性能相关的数据 3.确定性能问题产生的原因 4.实施优化手段 下面我们针对这几个步骤展开进行讲解 ...