近期本人参与的存储系统项目进入到性能调优阶段,当前系统的性能指标离项目预期目标还有较大差距。本人一直奉行"理论指导下的实践",尤其在调试初期,更要抓住主要矛盾,投入最少的资源来获取最大的收益。如何找到主要矛盾并重点解决呢?
本文参考经典书籍《计算机体系结构 量化研究方法》,主要介绍系统可靠性和性能评估的基本理论,以及 Amdahl's Law (阿姆达定律)和 processor performance equation(处理器性能等式),为性能调优和系统可靠性评估提供理论支撑。

Background and Introduction

Dependability

  • SLA (Service Level Agreement)

    • Service Accomplishment, where the service is delivered as specified
    • Service Interruption, where the delivered service is different from the SLA
  • Module Reliability
    • Mean time to failure (MTTF)
    • Mean time to repair (MTTR)
    • Mean time between failures (MTBF) = MTTF + MTTR
    • Failure in time (FIT): failures per billion hours
  • Module Availability
    • Module availability = MTTF / (MTTF + MTTR)

Example1

Assume a disk subsystem with the following components and MTTF:

  • 10 disks, each rated at 1,000,000-hour MTTF
  • 1 ATA controller, 500,000-hour MTTF
  • 1 power supply, 200,000-hour MTTF
  • 1 fan, 200,000-hour MTTF
  • 1 ATA cable, 1,000,000-hour MTTF

Using the simplifying assumptions that the lifetime are exponentially distributed and that failures are independent, compute the MTTF of the system as a whole.

Answer1

The sum of the failure rates is

\[Failure\ rate_{system}=10\times\frac{1}{1,000,000}+\frac{1}{500,000}+\frac{1}{200,000}+\frac{1}{200,000}+\frac{1}{1,000,000}=\frac{10+2+5+5+1}{1,000,000}=\frac{23}{1,000,000}=\frac{23,000}{1,000,000,000}
\]

or 23,000 FIT.

The MTTF for the system is just the inverse of the failure rate

\[MTTF_{system}=\frac{1}{Failure\ rate}=\frac{1,000,000}{23}\approx43,500 \ hours
\]

or just under 5 years.

Example2

Disk subsystems often have redundant power supplies to improve dependability. Using the preceding components and MTTFs, calculate the reliability of redundant power supplies. Assume that one power supply is sufficient to run the disk subsystem and that we are adding one redundant power supply.

Assumptions:

  1. lifetime of components are exponentially distributed.
  2. there is no dependency between the components failures.
  3. MTTF for our redundant power supplies is the mean time until one power supply failed divided by the chance that the other will fail before the first one is replaced.

Answer2

Mean time until one supply failed is $ MTTF_{power supply} / 2 $.

A good approximation of the probability of a second failure is MTTR over the mean time until the other power supply fails.

\[MTTF_{power\ supply\ pair}=\frac{MTTF_{power\ supply}/2}{\frac{MTTR_{power\ supply}}{MTTF_{power\ supply}}}=\frac{MTTF^2_{power\ supply}}{2 \times MTTR_{power\ supply}}
\]

Assume a human operator to notice the failure and replace it, the reliability of the fault tolerant pair of power supplies is

\[MTTF_{power supply pair} = \frac{200000^2}{2 \times 24} \approx 830,000,000
\]

making the pair about 4150 times more reliable than a single supply.

Annual Failure Rate

Fallacy

The rated mean time to failure of disks is 1,200,000 hours or almost 140 years so disk practically never fail.

The number 1,200,000 far exceeds the lifetime of a disk, which is commonly assumed to be 5 years or 43,800 hours.

For this large MTTF to make some sense: keep replacing the disk every 5 years - the planned lifetime of the disk. Replace a disk 27 times before a failure in next century, or about 140 years.

Therefore, more useful measure is the percentage of disks that fail, which is called annual failure rate (AFR).

Example

Assume 1000 disks with a 1,000,000-hour MTTF and that the disks are used 24 hours a day. If you replaced failed disk with a new one having the same reliability characteristics, the number of failed disks in a year(8760 hours) is

\[Failed\ disks = \frac{number\ of\ disks \times time\ period}{MTTF}=\frac{1000\ disks\times8760\ hours/disk}{1,000,000 hours}=9
\]

0.9% of disks would fail per year, 4.4% over 5-years lifetime.

In real environments according to research, 3%-7% of drives failed per year for an MTTF of about 125,000-300,000 hours.

The real-world MTTF is about 2-10 times worse than the manufacture's MTTF.

Performance Measurement

  • Typical performance metrics

    • response time
    • throughput
  • Execution time
    • Wall clock time: include all system overheads
    • CPU time: only computation time
  • Speedup of X relative to Y

    X is faster than Y,
    \[n=\frac{Execution\ time_Y}{Execution\ time_X}=\frac{1/Performance_Y}{1/Performance_X}=\frac{Performance_X}{Performance_Y}
    \]
  • Benchmarks
    • Kernels(e.g. matrix multiply)
    • Toy program (e.g. quick sort)

      Above 2 metrics cannot give the real performance of application execution.
    • Synthetic benchmarks (e.g. Dhrystone)
    • Benchmark suites (e.g. SPEC06FP, TPC-c)

Quantitative Principles of Computer Design

  • Take advantage of parallelism

    e.g. multiple processors, disks, memory banks, pipelining, multiple function units
  • Principle of locality
    • reuse of data and instructions
    • Temporal locality and spatial locality
  • Focus on the common case
    • favor the frequent case over the infrequent case
    • Amdahl's Law
    • processor performance equation

Amdahl's Law

Basics

Amdahl's law gives us a quick way to find speedup from some enhancement, which depends on 2 factors:

  • the fraction of the computation time in the original computer that can be converted to take advantage of the enhancement.
  • the improvement gained by the enhanced execution mode, that is, how much faster the task would run if the enhanced mode were used for the entire program.
\[Execution\ time_{new}=Execution\ time_{old}\times((1-Fraction_{enhanced})+\frac{Fraction_{enhanced}}{Speedup_{enhanced}})
\]

The overall speedup is the ratio of the execution times:

\[Speedup_{overall}=\frac{Execution\ time_{old}}{Execution\ time_{new}}=\frac{1}{(1-Fraction_{enhanced})+\frac{Fraction_{enhanced}}{Speedup_{enhanced}}}
\]

Examples

Example1

Suppose that we want to enhance the processor used for web serving. The new processor is 10 times faster on computation in the web serving application than the old processor. Assuming that the original processor is busy with computation 40% of the time and is waiting for IO 60% of the time, what is the overall speedup gained by incorporating the enhancement?

Answer1

\[Fraction_{enhanced}=0.4;Speedup_{enhanced}=10;Speedup_{overall}=\frac{1}{0.6+\frac{0.4}{10}} \approx 1.56
\]

Example2

FSQRT (Floating-point square root)

Proposal 1: FSQRT is responsible for 20% of the execution time of a critical graphics benchmark. Enhance FSQRT hardware and speed up this operation by a factor of 10.

Proposal 2: FP instructions are responsible for half of the execution time for the application. Make all FP instructions in the graphics process run faster by a factor of 1.6.

Compare these 2 design alternatives.

Answer2

\[Speedup_{FSQRT}=\frac{1}{(1-0.2)+\frac{0.2}{10}}=1.22
\]
\[Speedup_{FP}=\frac{1}{0.5+\frac{0.5}{1.6}}=1.23
\]

Improving the performance of the FP operations overall is slightly better because of the higher frequency.

Example3

Back to dependability example:

\[Failure\ rate_{system}=\frac{10+2+5+5+1}{1,000,000}=\frac{23}{1,000,000}
\]

The fraction of power supply in system is $ \frac{5}{23}=0.22 $.

After adding a redundant power supply, the system is about 4150 times more reliable than before.

The reliability improvement would be

\[Improvement_{power supply pair}=\frac{1}{(1-0.22)+\frac{0.22}{4150}} \approx 1.28
\]

Despite an impressive 4150x improvement in reliability of one module, from the system's perspective, the change has a measurable but small benefit.

Summary

  • Amdahl's law can serve as a guide to how much an enhancement will improve performance and how to distribute resources to improve cost performance. The goal, clearly, is to speed resources proportional to where time is spent.
  • Amdahl's law is particularly useful for comparing the overall system performance/processor design of 2 alternatives.

Processor Performance Equation

Basics

\[CPU\ time=CPU\ clock\ cycles\ of\ a\ program \times Clock\ cycle\ time
\]

or

\[CPU\ time=\frac{CPU\ clock\ cycles\ of\ a\ program}{Clock\ rate}
\]

From instruction respect,

\[CPI=\frac{CPU\ clock\ cycles\ of\ a\ program}{Instruction\ count}
\]
\[CPU\ time=IC \times CPI \times clock\ cycle\ time
\]

Term & Dependency:

  • clock cycle time - Hardware technology and organization, 1/clock rate
  • CPI, clock cycles per instruction - Organization and instruction set architecture
  • IC, instruction count - Instruction set architecture and compiler technology

For different types of instructions,

\[CPU\ time=(\Sigma_{i=1}^{n}{IC_{i} \times CPI_{i}}) \times Clock\ cycle\ time
\]

Overall CPI

\[CPI=\frac{\Sigma_{i=1}^{n}{IC_{i} \times CPI_{i}}}{IC}=\Sigma_{i=1}^{n}{\frac{IC_i}{IC}\times CPI_i}
\]

Examples

Consider previous Example2 in section Amdahl's Law, here modified to use measurements of the frequency of the instructions and of the instruction CPI values, which, in practice, are obtained by simulation or by hardware instrumentation.

Example

Suppose we made the following measurements:

  • Frequency of FP operations = 25%
  • Average CPI of FP operations = 4.0
  • Average CPI of other instructions = 1.33
  • Frequency of FSQRT = 2%
  • CPI of FSQRT = 20

Assume that the 2 design alternatives are to

  1. decrease the CPI of FSQRT to 2
  2. decrease the average CPI of all FP operations to 2.5.

Compare these 2 design alternatives using the processor performance equation.

Answer

Original CPI with neither enhancement:

\[CPI_{original}=\Sigma_{i=1}^{n}{\frac{IC_i}{IC} \times CPI_i}=(4.0 \times 25\%)+(1.33 \times 75\%)=2.0
\]
\[CPI_{with\ new\ FSQRT}=CPI_{original}-2\%\times(CPI_{old\ FSQRT}-CPI_{of\ new\ FSQRT})=2.0-2\% \times (20-2)=1.64
\]

Since the CPI of overall FP enhancement is slightly lower, its performance will be marginally better.

\[Speedup_{new\ FP}=\frac{CPU\ time_{original}}{CPU\ time_{new FP}}=\frac{IC \times CPI_{original} \times clock\ cycle\ time}{IC \times CPI_{new FP} \times clock\ cycle\ time}=\frac{2.0}{1.625}=1.23
\]

It is more possible to measure the constituent parts of the processor performance equation. Such isolated measurements are a key advantage of using processor performance equation versus Amdahl's Law in the previous example. In particular, it may be difficult to measure things such as the fraction of execution time for which a set of instructions is responsible.

性能调优 session 1 - 计算机体系结构 量化研究方法的更多相关文章

  1. (0303)《计算机体系结构 量化研究方法》PDF

    (01) https://blog.csdn.net/konghhhhh/article/details/106828402  存储器相关 (1) https://blog.csdn.net/iva_ ...

  2. golang 性能调优分析工具 pprof (上)

    一.golang 程序性能调优 在 golang 程序中,有哪些内容需要调试优化? 一般常规内容: cpu:程序对cpu的使用情况 - 使用时长,占比等 内存:程序对cpu的使用情况 - 使用时长,占 ...

  3. linux性能调优概述

    - 什么是性能调优?(what) - 为什么需要性能调优?(why) - 什么时候需要性能调优?(when) - 什么地方需要性能调优?(where) - 什么人来进行性能调优?(who) - 怎么样 ...

  4. SQL Server 性能调优(方法论)【转】

    目录 确定思路 wait event的基本troubleshooting 虚拟文件信息(virtual file Statistics) 性能指标 执行计划缓冲的使用 总结 性能调优很难有一个固定的理 ...

  5. 数据库实例性能调优利器:Performance Insights

    Performance Insights是什么 阿里云RDS Performance Insights是RDS CloudDBA产品一项专注于用户数据库实例性能调优.负载监控和关联分析的利器,以简单直 ...

  6. 一目了然 | 数据库实例性能调优利器:Performance Insights

    Performance Insights是什么 阿里云RDS Performance Insights是RDS CloudDBA产品一项专注于用户数据库实例性能调优.负载监控和关联分析的利器,以简单直 ...

  7. Kafka技术专题之「性能调优篇」消息队列服务端出现内存溢出OOM以及相关性能调优实战分析

    内存问题 本篇文章介绍Kafka处理大文件出现内存溢出 java.lang.OutOfMemoryError: Direct buffer memory,主要内容包括基础应用.实用技巧.原理机制等方面 ...

  8. 第0/24周 SQL Server 性能调优培训引言

    大家好,这是我在博客园写的第一篇博文,之所以要开这个博客,是我对MS SQL技术学习的一个兴趣记录. 作为计算机专业毕业的人,自己对技术的掌握总是觉得很肤浅,博而不专,到现在我才发现自己的兴趣所在,于 ...

  9. JVM内存模型与性能调优

    堆内存(Heap) 堆是由Java虚拟机(JVM,下文提到的JVM特指Sun hotspot JVM)用来存放Java类.对象和静态成员的内存空间,Java程序中创建的所有对象都在堆中分配空间,堆只用 ...

  10. iOS-------应用性能调优的25个建议和技巧

    性能对 iOS 应用的开发尤其重要,如果你的应用失去反应或者很慢,失望的用户会把他们的失望写满App Store的评论.然而由于iOS设备的限制,有时搞好性能是一件难事.开发过程中你会有很多需要注意的 ...

随机推荐

  1. 【python基础】循环语句-while循环

    1.初识while循环 循环语句主要的作用是在多次处理具有相同逻辑的代码时使用.while循环是Python提供的循环语句之一. while循环的语法格式之一: 比如我们输出1-10之间的奇数,编写程 ...

  2. 【前端方案】-表格排序列LRU缓存方案

    目标: 排序后的表格列,页面刷新或者用户重新登录后,能够保持之前的操作排序 完成效果: 解决方案: 利用localstorage对排序后的表格列属性进行存储,页面刷新或者用户重新进入该页面时都先从lo ...

  3. mysql_三大范式

    介绍 数据库的三大范式就是数据库的表应该如何设计,应该注意什么. 第一范式 要求每一张表都有一个主键,每一个字段都不可再分. 举例: id username address 1 张三 中国,北京 2 ...

  4. CF1832F Zombies

    简要题意 给定 \(n\) 个左闭右开的区间 \(A_i = [L_i, R_i)\),其中 \(0\le L_i < R_i \le x\),你可以自由选择 \(k\) 个长度为 \(m\) ...

  5. 3. @RequestMapping注解

    1. @RequestMapping 注解的功能 ‍ @RequestMapping 注解的作用就是将请求和处理请求的控制器方法关联起来,建立映射关系. ‍ SpringMVC 接收到指定的请求 , ...

  6. 使用 JCommander 解析命令行参数

    前言 如果你想构建一个支持命令行参数的程序,那么 jcommander 非常适合你,jcommander 是一个只有几十 kb 的 Java 命令行参数解析工具,可以通过注解的方式快速实现命令行参数解 ...

  7. 学习C++这一篇就够了(提升篇)

    C++中除了面向对象的编程思想外,还有另一种就是泛型编程 主要用到的技术就是模板 模板机制的分类: 函数模板 类模板 函数模板 作用:建立一个通用函数,其函数返回值类型和形参类型可以不具体定制,用虚拟 ...

  8. Go优雅的错误处理: 支持错误堆栈, 错误码, 错误链的工具库

    地址: https://github.com/morrisxyang/errors 如果觉得有用欢迎 Star 和 PR, 有问题请直接提issue errors 简单的支持错误堆栈, 错误码, 错误 ...

  9. 【技术实战】Vue技术实战【四】

    需求实战一 效果展示 代码展示 <template> <ARow> <ACol> <a-statistic-countdown :value="de ...

  10. 2023-07-29:给你一个由数字组成的字符串 s,返回 s 中独特子字符串数量。 其中的每一个数字出现的频率都相同。

    2023-07-29:给你一个由数字组成的字符串 s,返回 s 中独特子字符串数量. 其中的每一个数字出现的频率都相同. 答案2023-07-29: 大体步骤如下: 1.初始化变量base为固定值10 ...