http://www.lydsy.com/JudgeOnline/problem.php?id=4517 (题目链接)

题意

  求n个数中正好m个数位置不变的排列数。

Solution

  $${错排公式:D(n)=(n-1)*[D(n-1)+D(n-2)]}$$

  $${ans=D(n-m)*C(n,n-m)}$$

代码

// bzoj4517
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define MOD 1000000007
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1000010;
LL D[maxn],fac[maxn];
int n,m; LL power(LL a,LL b) {
LL res=1;
while (b) {
if (b&1) res=res*a%MOD;
b>>=1;a=a*a%MOD;
}
return res;
}
LL C(int n,int m) {
return fac[n]*power(fac[m],MOD-2)%MOD*power(fac[n-m],MOD-2)%MOD;
}
int main() {
int T;scanf("%d",&T);
D[0]=1;D[1]=0;
for (int i=2;i<=1000000;i++) D[i]=(i-1)*(D[i-2]+D[i-1])%MOD;
fac[0]=1;fac[1]=1;
for (int i=2;i<=1000000;i++) fac[i]=fac[i-1]*i%MOD;
while (T--) {
scanf("%d%d",&n,&m);
printf("%lld\n",C(n,n-m)*D[n-m]%MOD);
}
return 0;
}

  

【bzoj4517】 Sdoi2016—排列计数的更多相关文章

  1. BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*

    BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...

  2. [BZOJ4517][SDOI2016]排列计数(错位排列)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1616  Solved: 985[Submit][Statu ...

  3. bzoj4517[Sdoi2016]排列计数(组合数,错排)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1792  Solved: 1111[Submit][Stat ...

  4. [BZOJ4517] [Sdoi2016] 排列计数 (数学)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  5. 2018.10.25 bzoj4517: [Sdoi2016]排列计数(组合数学)

    传送门 组合数学简单题. Ans=(nm)∗1Ans=\binom {n} {m}*1Ans=(mn​)∗1~(n−m)(n-m)(n−m)的错排数. 前面的直接线性筛逆元求. 后面的错排数递推式本蒟 ...

  6. BZOJ4517——[Sdoi2016]排列计数

    求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可 ...

  7. BZOJ4517: [Sdoi2016]排列计数

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  8. bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得

    这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...

  9. bzoj千题计划282:bzoj4517: [Sdoi2016]排列计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=4517 组合数+错排公式 #include<cstdio> #include<ios ...

  10. BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

随机推荐

  1. RMAN备份脚本一列分享

    在ORACLE数据库中,RMAN备份的脚本非常多,下面介绍一例shell脚本如何通过RMAN备份,以及FTP上传RMAN备份文件以及归档日志文件的脚本. fullback.sh 里面调用RMAN命令做 ...

  2. JavaScript:内存泄露、性能调优

    1.在进行JS内存泄露检查之前,先要了解JS的内存管理: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Manageme ...

  3. Sublime Text 3

    Sublime Text 3 插件安装 安装 Package Control 按 Ctrl+` 或者,菜单 View > Show Console 打开命令窗口 import urllib.re ...

  4. 自己第一个github开源的感受

    自己在github上发布了开源<基于IOS的手机视频直播SDK>后,不到一个月,被人star了508次,fork了120次,这个成绩大大出乎了我自己的意料! github网址:https: ...

  5. MMORPG大型游戏设计与开发(服务器 游戏场景 地图和区域)

    地图的数据以及区域的信息是场景的重要组成部分,这些数据同时存在客户端和服务器,而且都是由编辑器生成的.那么保存的文件数据结构是怎样的?一张3D的场景地图又是怎样处理这些数据的?同时告诉大家这里同样只是 ...

  6. js面向对象与原型

    创建对象 var box = new Object();//创建对象 box.name = 'Lee'; //添加属性 box.age = 100; box.run = function(){ ret ...

  7. CH Round #72树洞[二分答案 DFS&&BFS]

    树洞 CH Round #72 - NOIP夏季划水赛 描述 在一片栖息地上有N棵树,每棵树下住着一只兔子,有M条路径连接这些树.更特殊地是,只有一棵树有3条或更多的路径与它相连,其它的树只有1条或2 ...

  8. DFA 最小化

    NDFA.εNDFA 确定化的细节这里就不总结了,这里说一说DFA最小化的算法. 关于DFA最小化,

  9. python使用you-get模块下载视频

    pip install you-get # 安装先 怎么用    进入命令行: you-get url 暂停下载:ctrl + c ,继续下载重复  you-get url 官网地址:https:// ...

  10. [备份]破解Xamarin

    [转]试用了一阵子Mono For Android,今天到期了,,囊中羞涩,只好破解. 说是要在vs2013的英文界面下运行破解包,不知道是真是假,下载并安装了一个. 然后又下载了破解包.是个名为xa ...