[ABC265E] Warp
Problem Statement
Takahashi is at the origin of a two-dimensional plane.
Takahashi will repeat teleporting $N$ times. In each teleportation, he makes one of the following moves:
- Move from the current coordinates $(x,y)$ to $(x+A,y+B)$
- Move from the current coordinates $(x,y)$ to $(x+C,y+D)$
- Move from the current coordinates $(x,y)$ to $(x+E,y+F)$
There are obstacles on $M$ points $(X_1,Y_1),\ldots,(X_M,Y_M)$ on the plane; he cannot teleport to these coordinates.
How many paths are there resulting from the $N$ teleportations? Find the count modulo $998244353$.
Constraints
- $1 \leq N \leq 300$
- $0 \leq M \leq 10^5$
- $-10^9 \leq A,B,C,D,E,F \leq 10^9$
- $(A,B)$, $(C,D)$, and $(E,F)$ are distinct.
- $-10^9 \leq X_i,Y_i \leq 10^9$
- $(X_i,Y_i)\neq(0,0)$
- $(X_i,Y_i)$ are distinct.
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $M$
$A$ $B$ $C$ $D$ $E$ $F$
$X_1$ $Y_1$
$X_2$ $Y_2$
$\vdots$
$X_M$ $Y_M$
Output
Print the answer.
Sample Input 1
2 2
1 1 1 2 1 3
1 2
2 2
Sample Output 1
5
The following $5$ paths are possible:
- $(0,0)\to(1,1)\to(2,3)$
- $(0,0)\to(1,1)\to(2,4)$
- $(0,0)\to(1,3)\to(2,4)$
- $(0,0)\to(1,3)\to(2,5)$
- $(0,0)\to(1,3)\to(2,6)$
Sample Input 2
10 3
-1000000000 -1000000000 1000000000 1000000000 -1000000000 1000000000
-1000000000 -1000000000
1000000000 1000000000
-1000000000 1000000000
Sample Output 2
0
Sample Input 3
300 0
0 0 1 0 0 1
Sample Output 3
292172978
有三种步伐,发现我们在坐标系上很难 dp。因为只有三种移动方式,所以我们考虑 dp 每种操作了多少次。
为了 \(O(1)\) 判断,我们可以把所有不能走的坐标用哈希表存起来。
定义 \(dp_{i,j,k}\) 为第一中移动方式移动了 \(i\) 次,第二种移动方式移动了 \(j\) 次第三种移动方式移动了 \(k\) 次的情况下,有多少种方案。
首先在哈希表上查一下这样子到达的点是否可以走,如果可以走,\(dp_{i,j,k}=dp_{i-1,j,k}+dp_{i,j-1,k}+dp_{i,j,k-1}\)
#include<cstdio>
const int N=305,S=2e9+1,P=998244353,mod=1e7+3;
typedef long long LL;
int n,m,a,b,c,d,e,f,dp[N][N][N];
LL hs[mod],ans,x,y;
LL hsh(int x,int y)
{
return 1LL*(x+S-1)*S+y+S;
}
void insert(LL a)
{
for(int i=a%mod;;i++)
{
if(i==mod)
i=0;
if(!hs[i])
{
hs[i]=a;
break;
}
}
}
int find(LL a)
{
for(int i=a%mod;;i++)
{
if(i==mod)
i=0;
if(!hs[i])
return 0;
if(hs[i]==a)
return 1;
}
}
LL tx(int x,int y,int z)
{
return 1LL*x*a+1LL*y*c+1LL*z*e;
}
LL ty(int x,int y,int z)
{
return 1LL*x*b+1LL*y*d+1LL*z*f;
}
int main()
{
scanf("%d%d%d%d%d%d%d%d",&n,&m,&a,&b,&c,&d,&e,&f);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
insert(hsh(x,y));
}
dp[0][0][0]=1;
for(int i=0;i<=n;i++)
{
for(int j=0;j+i<=n;j++)
{
for(int k=0;k+j+i<=n;k++)
{
x=tx(i,j,k),y=ty(i,j,k);
if(x<-1e9||x>1e9||y<-1e9||y>1e9||!find(hsh(x,y)))
{
if(i)
dp[i][j][k]=dp[i-1][j][k];
if(j)
dp[i][j][k]=(dp[i][j][k]+dp[i][j-1][k])%P;
if(k)
dp[i][j][k]=(dp[i][j][k]+dp[i][j][k-1])%P;
}
if(i+j+k==n)
ans=(ans+dp[i][j][k])%P;
// printf("%lld %lld %d %d %d %d\n",x,y,i,j,k,dp[i][j][k]);
}
}
}
printf("%d",ans);
return 0;
}
[ABC265E] Warp的更多相关文章
- CUDA2.1-原理之索引与warp
本小节来自<大规模并行处理器编程实战>第四节,该书是很好的从内部原理结构上来讲述了CUDA的,对于理解CUDA很有帮助,借以博客的形式去繁取间,肯定会加入自己个人理解,所以有错误之处还望指 ...
- Warp divergence
Threads are executed in warps of 32, with all threads in the warp executing the same instruction at ...
- CUDA ---- Warp解析
Warp 逻辑上,所有thread是并行的,但是,从硬件的角度来说,实际上并不是所有的thread能够在同一时刻执行,接下来我们将解释有关warp的一些本质. Warps and Thread Blo ...
- CUDA性能优化----warp深度解析
本文转自:http://blog.163.com/wujiaxing009@126/blog/static/71988399201701224540201/ 1.引言 CUDA性能优化----sp, ...
- Curved UI - VR Ready Solution To Bend Warp Your Canvas 1.7,1.8,2.2,2.3 四种版本压缩包(Unity UGUI曲面插件),可以兼容VRTK
Curved UI - VR Ready Solution To Bend Warp Your Canvas 1.7,1.8,2.2,2.3 四种版本压缩包(Unity UGUI曲面插件) 可以兼容V ...
- 【并行计算-CUDA开发】CUDA编程——GPU架构,由sp,sm,thread,block,grid,warp说起
掌握部分硬件知识,有助于程序员编写更好的CUDA程序,提升CUDA程序性能,本文目的是理清sp,sm,thread,block,grid,warp之间的关系.由于作者能力有限,难免有疏漏,恳请读者批评 ...
- 【并行计算-CUDA开发】CUDA ---- Warp解析
Warp 逻辑上,所有thread是并行的,但是,从硬件的角度来说,实际上并不是所有的thread能够在同一时刻执行,接下来我们将解释有关warp的一些本质. Warps and Thread Blo ...
- 【并行计算-CUDA开发】warp是调度和执行的基本单位而harf-warp为存储器操作基本单位
1.在用vs运行cuda的一些例子时,在编译阶段会报出很多警告: warning C4819 ...... 解决这个警告的方法是打开出现warning的文件,Ctrl+A全选,然后在文件菜单:file ...
- CUDA01 - 硬件架构、warp调度、指令流水线和cuda并发流
这一部分打算从头记录一下CUDA的编程方法和一些物理架构上的特点:从硬件入手,写一下包括线程束的划分.流水线的调度等等微结构的问题,以及这些物理设备是如何与软件对应的.下一部分会写一下cuda中的几种 ...
- 还在玩传统终端,不妨来试试全新 AI 终端 Warp
壹 ❀ 引 最近一段时间,AI领域如同雨后春笋般开始猛烈生长,processon,sentry,一些日常使用的工具都在积极接入AI,那么正好借着AI的风头,今天给大家推荐一款非常不错的智能终端 war ...
随机推荐
- DevSecOps之应用安全测试工具及选型
上篇文章,有同学私信想了解有哪些DevSecOps工具,这里整理出来,供大家参考(PS: 非专业安全人士,仅从DevOps建设角度,给出自己见解) 软件中的漏洞和弱点很常见:84%的软件漏洞都是利用应 ...
- Redis从入门到放弃(12):pipeline管道技术
1.引言 在现代应用程序中,高性能和低延迟是至关重要的因素.而在处理大规模数据操作时,Redis作为一种快速.可靠的内存数据库,成为了许多开发人员的首选. 在Redis中,每个操作都需要与服务器进行往 ...
- RPG MAKER MV 打包APK教程(一键打包,无需编写任何代码)
HTML一键打包APK工具可以快速打包RPG Maker制作出来的游戏, 打包教程如下: 打包软件下载地址: 点击进入下载页面 打包步骤 1.准备好待打包的RPG Maker项目,放在系统的某一目录下 ...
- 【krpano】淘宝buy+案例
这是一个类似淘宝buy+的案例,是基于krpano全景开发工具二次开发的全景视频.WebVR.360°环物.全景视频热点添加于一身的综合性案例.现在将案例上传网站供krpano技术人员和爱好者大家共同 ...
- @Validated指定校验顺序
在Java中,使用@NotNull注解时,可以指定多个参数的顺序.为了指定顺序,你可以使用@GroupSequence注解. 首先,为每个需要校验的参数定义一个接口,并在接口上添加@GroupSequ ...
- 一个关于 i++ 和 ++i 的面试题打趴了所有人
前言 都说大城市现在不好找工作,可小城市却也不好招人. 我们公司招了挺久都没招到,主管感到有些心累. 我提了点建议,是不是面试问的太深了,在这种小城市,能干活就行. 他说自己问的面试题都很浅显,如果答 ...
- 【保姆级安装使用教程#1】Xshell与Xftp的下载、安装和使用
1. 下载 官网下载地址:==Xshell与Xftp下载地址== 当然也可以用鄙人的百度网盘连接下载这是链接:链接百度网盘下载Xshell与Xftp分别下载Xshell与Xftp 2. 安装Xshel ...
- Flask框架——详解URL、HTTP请求、视图函数和视图类
文章目录 1 什么是url? 2 为什么要有url? 3 如何应用url? 3.1 url和路由的区别. 3.2 url传参的两种 3.2.1动态路由传参 3.2.1.1 动态路由的过滤 3.2.2 ...
- Update 1.82.1: The update addresses this security issue.
August 2023 (version 1.82) 更新后显示发行说明 Update 1.82.1: The update addresses this security issue. Welcom ...
- 推荐免费的svn空间(SVN代码托管)
推荐免费的svn空间(SVN代码托管) 最近研究了国内和国外的免费svn空间,SVN代码托管,SVN在线,代码托管中心,有所心得. 1.http://www.svn999.com/ [推荐]国内的,免 ...