深度学习应用篇-推荐系统[12]:经典模型-DeepFM模型、DSSM模型召回排序策略以及和其他模型对比

1.DeepFM模型

1.1.模型简介

CTR预估是目前推荐系统的核心技术,其目标是预估用户点击推荐内容的概率。DeepFM模型包含FM和DNN两部分,FM模型可以抽取low-order(低阶)特征,DNN可以抽取high-order(高阶)特征。低阶特征可以理解为线性的特征组合,高阶特征,可以理解为经过多次线性-非线性组合操作之后形成的特征,为高度抽象特征。无需Wide&Deep模型人工特征工程。由于输入仅为原始特征,而且FM和DNN共享输入向量特征,DeepFM模型训练速度很快。

注解:Wide&Deep是一种融合浅层(wide)模型和深层(deep)模型进行联合训练的框架,综合利用浅层模型的记忆能力和深层模型的泛化能力,实现单模型对推荐系统准确性和扩展性的兼顾。

该模型的Paddle实现请参考链接:PaddleRec版本

1.2.DeepFM模型结构

为了同时利用low-order和high-order特征,DeepFM包含FM和DNN两部分,两部分共享输入特征。对于特征i,标量wi是其1阶特征的权重,该特征和其他特征的交互影响用隐向量Vi来表示。Vi输入到FM模型获得特征的2阶表示,输入到DNN模型得到high-order高阶特征。

$$

\hat{y} = sigmoid(y_{FM} + y_{DNN})

$$

DeepFM模型结构如下图所示,完成对稀疏特征的嵌入后,由FM层和DNN层共享输入向量,经前向反馈后输出。

为什么使用FM和DNN进行结合?

  • 在排序模型刚起步的年代,FM很好地解决了LR需要大规模人工特征交叉的痛点,引入任意特征的二阶特征组合,并通过向量内积求特征组合权重的方法大大提高了模型的泛化能力。
  • 标准FM的缺陷也恰恰是只能做二阶特征交叉。

所以,将FM与DNN结合可以帮助我们捕捉特征之间更复杂的非线性关系。

为什么不使用FM和RNN进行结合?

  • 如果一个任务需要处理序列信息,即本次输入得到的输出结果,不仅和本次输入相关,还和之前的输入相关,那么使用RNN循环神经网络可以很好地利用到这样的序列信息
  • 在预估点击率时,我们会假设用户每次是否点击的事件是独立的,不需要考虑序列信息,因此RNN于FM结合来预估点击率并不合适。还是使用DNN来模拟出特征之间的更复杂的非线性关系更能帮助到FM。

1.3.FM

FM(Factorization Machines,因子分解机)最早由Steffen Rendle于2010年在ICDM上提出,它是一种通用的预测方法,在即使数据非常稀疏的情况下,依然能估计出可靠的参数进行预测。与传统的简单线性模型不同的是,因子分解机考虑了特征间的交叉,对所有嵌套变量交互进行建模(类似于SVM中的核函数),因此在推荐系统和计算广告领域关注的点击率CTR(click-through rate)和转化率CVR(conversion rate)两项指标上有着良好的表现。

为什么使用FM?

  • 特征组合是许多机器学习建模过程中遇到的问题,如果对特征直接建模,很有可能忽略掉特征与特征之间的关联信息,一次可以通过构建新的交叉特征这一特征组合方式提高模型的效果。FM可以得到特征之间的关联信息。
  • 高维的稀疏矩阵是实际工程中常见的问题,并且直接导致计算量过大,特征权值更新缓慢。试想一个10000100的表,每一列都有8中元素,经过one-hot编码之后,会产生一个10000800的表。

而FM的优势就在于对这两方面问题的处理。首先是特征组合,通过两两特征组合,引入交叉项特征(二阶特征),提高模型得分;其次是高维灾难,通过引入隐向量(对参数矩阵进行分解),完成特征参数的估计。

FM模型不单可以建模1阶特征,还可以通过隐向量点积的方法高效的获得2阶特征表示,即使交叉特征在数据集中非常稀疏甚至是从来没出现过。这也是FM的优势所在。

$$

y_{FM}= <w,x> + \sum_{j_1=1}{d}\sum_{j_2=j_1+1}{d}<V_i,V_j>x_{j_1}\cdot x_{j_2}

$$

单独的FM层结构如下图所示:

1.4.DNN

该部分和Wide&Deep模型类似,是简单的前馈网络。在输入特征部分,由于原始特征向量多是高纬度,高度稀疏,连续和类别混合的分域特征,因此将原始的稀疏表示特征映射为稠密的特征向量。

假设子网络的输出层为:

$$

a^{(0)}=[e1,e2,e3,...en]

$$

DNN网络第l层表示为:

$$

a{(l+1)}=\sigma{(W{(l)}a{(l)}+b{(l)})}

$$

再假设有H个隐藏层,DNN部分的预测输出可表示为:

$$

y_{DNN}= \sigma{(W^{|H|+1}\cdot a^H + b^{|H|+1})}

$$

DNN深度神经网络层结构如下图所示:

1.5.Loss及Auc计算

DeepFM模型的损失函数选择Binary_Cross_Entropy(二值交叉熵)函数

$$

H_p(q)=-\frac{1}{N}\sum_{i=1}^Ny_i\cdot log(p(y_i))+(1-y_i) \cdot log(1-p(y_i))

$$

对于公式的理解,y是样本点,p(y)是该样本为正样本的概率,log(p(y))可理解为对数概率。

Auc是Area Under Curve的首字母缩写,这里的Curve指的就是ROC曲线,AUC就是ROC曲线下面的面积,作为模型评价指标,他可以用来评价二分类模型。其中,ROC曲线全称为受试者工作特征曲线 (receiver operating characteristic curve),它是根据一系列不同的二分类方式(分界值或决定阈),以真阳性率(敏感性)为纵坐标,假阳性率(1-特异性)为横坐标绘制的曲线。

可使用paddle.metric.Auc()进行调用。

可参考已有的资料:机器学习常用评估指标

1.6.与其他模型的对比

如表1所示,关于是否需要预训练,高阶特征,低阶特征和是否需要特征工程的比较上,列出了DeepFM和其他几种模型的对比。DeepFM表现更优。

如表2所示,不同模型在Company*数据集和Criteo数据集上对点击率CTR进行预估的性能表现。DeepFM在各个指标上表现均强于其他模型。

  • 参考文献

[IJCAI 2017]Guo, Huifeng,Tang, Ruiming,Ye, Yunming,Li, Zhenguo,He, Xiuqiang. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction

2.DSSM

以搜索引擎和搜索广告为例,最重要的也最难解决的问题是语义相似度,这里主要体现在两个方面:召回和排序。

在召回时,传统的文本相似性如 BM25,无法有效发现语义类 query-Doc 结果对,如"从北京到上海的机票"与"携程网"的相似性、"快递软件"与"菜鸟裹裹"的相似性。

在排序时,一些细微的语言变化往往带来巨大的语义变化,如"小宝宝生病怎么办"和"狗宝宝生病怎么办"、"深度学习"和"学习深度"。

DSSM(Deep Structured Semantic Models)为计算语义相似度提供了一种思路。

该模型的Paddle实现请参考链接:PaddleRec版本

2.1DSSM模型结构

DSSM(Deep Structured Semantic Models)的原理很简单,通过搜索引擎里 Query 和 Title 的海量的点击曝光日志,用 DNN 把 Query 和 Title 表达为低纬语义向量,并通过 cosine 距离来计算两个语义向量的距离,最终训练出语义相似度模型。该模型既可以用来预测两个句子的语义相似度,又可以获得某句子的低纬语义向量表达。

DSSM 从下往上可以分为三层结构:输入层、表示层、匹配层

2.1.1 输入层

输入层做的事情是把句子映射到一个向量空间里并输入到 DNN 中,这里英文和中文的处理方式有很大的不同。

英文

英文的输入层处理方式是通过word hashing。举个例子,假设用 letter-trigams 来切分单词(3 个字母为一组,#表示开始和结束符),boy 这个单词会被切为 #-b-o, b-o-y, o-y-#



这样做的好处有两个:首先是压缩空间,50 万个词的 one-hot 向量空间可以通过 letter-trigram 压缩为一个 3 万维的向量空间。其次是增强范化能力,三个字母的表达往往能代表英文中的前缀和后缀,而前缀后缀往往具有通用的语义。

这里之所以用 3 个字母的切分粒度,是综合考虑了向量空间和单词冲突:

Letter-Bigram Letter-Trigram
word Size Token Size Collision Token Size Collision
40k 1107 18 10306 2
500k 1607 1192 30621 22

如上表,以 50 万个单词的词库为例,2 个字母的切分粒度的单词冲突为 1192(冲突的定义:至少有两个单词的 letter-bigram 向量完全相同),而 3 个字母的单词冲突降为 22 效果很好,且转化后的向量空间 3 万维不是很大,综合考虑选择 3 个字母的切分粒度。

中文

中文的输入层处理方式与英文有很大不同,首先中文分词是个让所有 NLP 从业者头疼的事情,即便业界号称能做到 95%左右的分词准确性,但分词结果极为不可控,往往会在分词阶段引入误差。所以这里我们不分词,而是仿照英文的处理方式,对应到中文的最小粒度就是单字了。

由于常用的单字为 1.5 万左右,而常用的双字大约到百万级别了,所以这里出于向量空间的考虑,采用字向量(one-hot)作为输入,向量空间约为 1.5 万维。

2.1.2表示层

DSSM 的表示层采用 BOW(Bag of words)的方式,相当于把字向量的位置信息抛弃了,整个句子里的词都放在一个袋子里了,不分先后顺序。

紧接着是一个含有多个隐层的 DNN,如下图所示:

用$W_{i}$ 表示第 i 层的权值矩阵,$b_{i}$表示第 i 层的偏置项。则第一隐层向量 l2(300 维),第 二个隐层向量 l3(300 维),输出向量 y(128 维),用数学公式可以分别表示为:

$$l_{1}=W_{1}x$$

$$l_{i}=f(W_{i}l_{i-1}+b_{i}) ,i=2,...,N-1$$

$$y=f(W_{N}l_{N-1}+b_{N})$$

用 tanh 作为隐层和输出层的激活函数:

$$f(x)=\frac{1-e{-2x}}{1+e{-2x}}$$

最终输出一个 128 维的低纬语义向量。

2.1.3 匹配层

Query 和 Doc 的语义相似性可以用这两个语义向量(128 维) 的 cosine 距离来表示:

$$R(Q,D)=cosine(y_{Q},y_{D})=\frac{y_{Q}^Ty_{D}}{||y_{Q}|| ||y_{D}||}$$

通过softmax 函数可以把Query 与正样本 Doc 的语义相似性转化为一个后验概率:

$$P(D^{+}|Q)=\frac{exp(\gamma R(Q,D{+}))}{\sum_{D{'}\in D}exp(\gamma R(Q,D^{'}))}$$

其中 r 为 softmax 的平滑因子,D 为 Query 下的正样本,D-为 Query 下的负样本(采取随机负采样),D 为 Query 下的整个样本空间。

在训练阶段,通过极大似然估计,我们最小化损失函数:

$$L(\Lambda)=-log \prod_{(Q,D{+})}P(D{+}|Q)$$

残差会在表示层的 DNN 中反向传播,最终通过随机梯度下降(SGD)使模型收敛,得到各网络层的参数${W_{i},b_{i}}$。

负样本出现在计算softmax中,loss反向传播只用正样本。

2.1.4优缺点

  • 优点:DSSM 用字向量作为输入既可以减少切词的依赖,又可以提高模型的泛化能力,因为每个汉字所能表达的语义是可以复用的。另一方面,传统的输入层是用 Embedding 的方式(如 Word2Vec 的词向量)或者主题模型的方式(如 LDA 的主题向量)来直接做词的映射,再把各个词的向量累加或者拼接起来,由于 Word2Vec 和 LDA 都是无监督的训练,这样会给整个模型引入误差,DSSM 采用统一的有监督训练,不需要在中间过程做无监督模型的映射,因此精准度会比较高。

  • 缺点:上文提到 DSSM 采用词袋模型(BOW),因此丧失了语序信息和上下文信息。另一方面,DSSM 采用弱监督、端到端的模型,预测结果不可控。

更多优质内容请关注公重号:汀丶人工智能

  • 参考文献

[1]. Huang P S, He X, Gao J, et al. Learning deep structured semantic models for web search using clickthrough data[C]// ACM International Conference on Conference on Information & Knowledge Management. ACM, 2013:2333-2338.

深度学习应用篇-推荐系统[12]:经典模型-DeepFM模型、DSSM模型召回排序策略以及和其他模型对比的更多相关文章

  1. 深度学习与CV教程(12) | 目标检测 (两阶段,R-CNN系列)

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...

  2. 深度学习实战篇-基于RNN的中文分词探索

    深度学习实战篇-基于RNN的中文分词探索 近年来,深度学习在人工智能的多个领域取得了显著成绩.微软使用的152层深度神经网络在ImageNet的比赛上斩获多项第一,同时在图像识别中超过了人类的识别水平 ...

  3. 深度学习应用在推荐系统的论文-----A Novel Deep Learning-Based Collaborative Filtering Model for Recommendation System

    1.题目:一种新的基于深度学习的协同过滤推荐系统 2.摘要: 以协同过滤(CF)为基础的模型主要获取用户和项目的交互或者相关性.然而,现有的基于CF的方法只能掌握单一类型的关系,如RBM,它只能获取用 ...

  4. 【神经网络与深度学习】Caffe使用step by step:使用自己数据对已经训练好的模型进行finetuning

    在经过前面Caffe框架的搭建以及caffe基本框架的了解之后,接下来就要回到正题:使用caffe来进行模型的训练. 但如果对caffe并不是特别熟悉的话,从头开始训练一个模型会花费很多时间和精力,需 ...

  5. [深度学习] Pytorch(三)—— 多/单GPU、CPU,训练保存、加载模型参数问题

    [深度学习] Pytorch(三)-- 多/单GPU.CPU,训练保存.加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU.GPU与CPU的不同环境下训练保存.加载使用使用模型的问题,如果保存 ...

  6. 深度学习入门篇--手把手教你用 TensorFlow 训练模型

    欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:付越 导语 Tensorflow在更新1.0版本之后多了很多新功能,其中放出了很多用tf框架写的深度网络结构(https://git ...

  7. 【深度学习 论文篇 02-1 】YOLOv1论文精读

    原论文链接:https://gitee.com/shaoxuxu/DeepLearning_PaperNotes/blob/master/YOLOv1.pdf 笔记版论文链接:https://gite ...

  8. deep learning...深入学习深度学习 --工具篇

    Caffe( http://caffe.berkeleyvision.org/ )是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清( http://daggerfs.c ...

  9. 【深度学习 论文篇 03-2】Pytorch搭建SSD模型踩坑集锦

    论文地址:https://arxiv.org/abs/1512.02325 源码地址:http://github.com/amdegroot/ssd.pytorch 环境1:torch1.9.0+CP ...

  10. 【深度学习 论文篇 01-1 】AlexNet论文翻译

    前言:本文是我对照原论文逐字逐句翻译而来,英文水平有限,不影响阅读即可.翻译论文的确能很大程度加深我们对文章的理解,但太过耗时,不建议采用.我翻译的另一个目的就是想重拾英文,所以就硬着头皮啃了.本文只 ...

随机推荐

  1. Java中的命名规范

    Java中的命名规范 一. 常规约定 类一般采用大驼峰命名,方法和局部变量使用小驼峰命名,而大写下划线命名通常是常量和枚举中使用. 类型 约束 例 项目名 全部小写,多个单词用中划线分隔'-' spr ...

  2. PVE开启硬件显卡直通功能

    首先编辑GRUB配置文件: root@pve:~# vim /etc/default/grub root@pve:~# root@pve:~# cat /etc/default/grub # If y ...

  3. Spring注解系列——@PropertySource

    在Spring框架中@PropertySource注解是非常常用的一个注解,其主要作用是将外部化配置解析成key-value键值对"存入"Spring容器的Environment环 ...

  4. 近万字总结:Java8 Stream流式处理指南

    总结/朱季谦 在实际项目当中,若能熟练使用Java8 的Stream流特性进行开发,就比较容易写出简洁优雅的代码.目前市面上很多开源框架,如Mybatis- Plus.kafka Streams以及F ...

  5. XmlSerializer 反射类型xxx时出错,反射属性xxx时出错。

    在使用XmlSerializer将类序列化成XML时出错,看到InnerException的message可以知道是这个receiver里有错误,进入这个类查看一下代码发现有重名的类 NodeId类修 ...

  6. 【能力提升】SQL Server常见问题介绍及快速解决建议

    前言 本文旨在帮助SQL Server数据库的使用人员了解常见的问题,及快速解决这些问题.这些问题是数据库的常规管理问题,对于很多对数据库没有深入了解的朋友提供一个大概的常见问题框架. 下面一些问题是 ...

  7. [C++基础入门] 2、数据类型

    文章目录 2 数据类型 2.1 整型 2.2 sizeof关键字 2.3 实型(浮点型) 2.4 字符型 2.5 转义字符 2.6 字符串型 2.7 布尔类型 bool 2.8 数据的输入 2 数据类 ...

  8. python自产调试工具pdb的使用

    python自产调试工具pdb的使用 介绍 调试打印在写代码的时候不可避免 项目越大,调试可能花的时间会越多 print调试可能是最早用的,一段时间内你都会习惯这种方式 一旦成了老鸟,你应该会去用ID ...

  9. JavaScript原生兼容大全-持续更新

    JavaScript兼容-持续更新 1.css非行内样式操作 // currentStyle用于IE低版本 getComputed用于主流浏览器 // element 目标元素 attribute 目 ...

  10. 2023-01-10:智能机器人要坐专用电梯把货物送到指定地点, 整栋楼只有一部电梯,并且由于容量限制智能机器人只能放下一件货物, 给定K个货物,每个货物都有所在楼层(from)和目的楼层(to),

    2023-01-10:智能机器人要坐专用电梯把货物送到指定地点, 整栋楼只有一部电梯,并且由于容量限制智能机器人只能放下一件货物, 给定K个货物,每个货物都有所在楼层(from)和目的楼层(to), ...