题意:

n个蛋糕编号从小到大编号,j号蛋糕可以放在i号上面,当且仅当j的体积严格大于i且i<j,问最终可得的最大蛋糕体积。

分析:

实质为求最长上升子序列问题,设dp[i]从头开始到第i位的最长子序列长度,可以想到O(n2)的做法,状态转移方程:

  1. dp[i] = max(dp[j], j >= 0 && j < i && v[j] < v[i]) + v[i];

但是n可达1e5,这样做会超时。。。

那么如何快速的获取满足v[j]小于v[i]的最大的dp[j]呢?可以先将所有蛋糕体积进行离散化,用在排序后的数组的位置pos作为线段树下标,用线段树维护区间内最大的dp值,获取最大值时只需查询[0,pos)区间的dp最大值,时间复杂度为O(logn)。

那么这样能否确保是按标号顺序进行叠放的呢?由于我们是从0到n−1进行遍历,排在后面的蛋糕,即使体积比当前蛋糕小,但是dp值并未更新,仍然为0,当前蛋糕是肯定不会选择放在它上面的~~~~

代码:

  1. #include<cstdio>
  2. #include<cmath>
  3. #include<iostream>
  4. #include<algorithm>
  5. using namespace std;//[)
  6. const int maxm = 100005, maxn = maxm<<2, INF = 0x3fffffff;
  7. #define pi acos(-1.0)
  8. typedef long long ll;
  9. ll dp[maxn];
  10. ll v[maxm], tv[maxm];
  11. void build(int k, int l, int r)
  12. {
  13. dp[k] = 0;
  14. if(l == r - 1) return;
  15. int mid = (l + r) / 2;
  16. build(2 * k + 1, l, mid);
  17. build(2 * k + 2, mid, r);
  18. }
  19. void update(int num, ll x, int k, int l, int r)
  20. {
  21. dp[k] = max(dp[k], x);
  22. if(l == r - 1) return;
  23. int mid = (l + r)/2;
  24. if(mid > num)
  25. update(num, x, k * 2 + 1, l, mid);
  26. else
  27. update(num, x, k * 2 + 2, mid, r);
  28. }
  29. ll query(int a, int b, int k, int l, int r)
  30. {
  31. if(a >= r||b <= l) return 0;
  32. else if(a <= l && b >= r) return dp[k];
  33. else{
  34. int mid = (l + r) / 2;
  35. ll ta = query(a, b, k * 2 + 1, l, mid);
  36. ll tb = query(a, b, k * 2 + 2, mid, r);
  37. return max(ta, tb);
  38. }
  39. }
  40. int main (void)
  41. {
  42. int n;scanf("%d",&n);
  43. int r, h;
  44. for(int i = 0; i < n; i++){
  45. scanf("%d%d",&r,&h);
  46. tv[i] = v[i] =(ll) r * r * h;
  47. }
  48. sort(tv, tv + n);
  49. int tot = unique(tv, tv + n) - tv;
  50. build(0, 0, tot);
  51. ll res = 0;
  52. for(int i = 0; i < n; i++){
  53. int pos = lower_bound(tv, tv + tot, v[i]) - tv;
  54. ll tmp = query(0, pos, 0, 0, tot) + v[i];
  55. res = max(res, tmp);
  56. update(pos, tmp, 0, 0, tot);
  57. }
  58. printf("%.10lf\n", res * pi);
  59. return 0;
  60. }

Codeforces 629D Babaei and Birthday Cake(线段树优化dp)的更多相关文章

  1. Codeforces Round #426 (Div. 2) D 线段树优化dp

    D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  2. Codeforces Round #343 (Div. 2) D. Babaei and Birthday Cake 线段树维护dp

    D. Babaei and Birthday Cake 题目连接: http://www.codeforces.com/contest/629/problem/D Description As you ...

  3. Codeforces 629D Babaei and Birthday Cake(树状数组优化dp)

    题意: 线段树做法 分析: 因为每次都是在当前位置的前缀区间查询最大值,所以可以直接用树状数组优化.比线段树快了12ms~ 代码: #include<cstdio> #include< ...

  4. D - The Bakery CodeForces - 834D 线段树优化dp···

    D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...

  5. Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...

  6. BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】

    BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...

  7. [AGC011F] Train Service Planning [线段树优化dp+思维]

    思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...

  8. 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp

    题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...

  9. POJ 2376 Cleaning Shifts (线段树优化DP)

    题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数 题目传送门 线段树优化$DP$裸题.. 先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里 ...

  10. 洛谷$P2605\ [ZJOI2010]$基站选址 线段树优化$dp$

    正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示 ...

随机推荐

  1. JDK集合框架--综述

       接下来的几篇博客总结一下对jdk中常用集合类知识,本篇博客先整体性地介绍一下集合及其主要的api: 从整体上来说,集合分两大类collection和map: 首先来看看Collection: c ...

  2. P1583 魔法照片

    题目描述 一共有n(n≤20000)个人(以1--n编号)向佳佳要照片,而佳佳只能把照片给其中的k个人.佳佳按照与他们的关系好坏的程度给每个人赋予了一个初始权值W[i].然后将初始权值从大到小进行排序 ...

  3. 用nowrap实现div内的元素不换行

    在编写自定义插件my-slider的过程中,发现无论float还是inline-block均不能保证div内的内容不换行(这两个属性在内容超出容器尺寸后,均将剩余内容做换行处理),在浏览器内比较了自己 ...

  4. 学习笔记 第十二章 CSS3+HTML5网页排版

    第12章   CSS3+HTML5网页排版 [学习重点] 正确使用HTML5结构标签 正确使用HTML5语义元素 能够设计符合标准的网页结构 12.1  使用结构标签 在制作网页时,不仅需要使用< ...

  5. 《基于Node.js实现简易聊天室系列之总结》

    前前后后完成这个聊天室的Demo花了大概一个星期,当然一个星期是仅仅指编码的工作.前期的知识储备是从0到1从无到有,花费了一定的时间熟悉Node.js的基本语法以及Node.js和mongoDB之间的 ...

  6. 移动端 H5 拍照 从手机选择图片,移动端预览,图片压缩,图片预览,再上传服务器

    前言:最近公司的项目在做全网营销,要做非微信浏览器的wap 站 的改版,其中涉及到的一点技术就是采用H5 选择手机相册中的图片,或者拍照,再将获取的图片进行压缩之后上传. 这个功能模块主要有这5点比较 ...

  7. H.264学习笔记3——帧间预测

    帧间预测主要包括运动估计(运动搜索方法.运动估计准则.亚像素插值和运动矢量估计)和运动补偿. 对于H.264,是对16x16的亮度块和8x8的色度块进行帧间预测编码. A.树状结构分块 H.264的宏 ...

  8. matlab中数据类型

    在MATLAB中有15种基本数据类型,分别是8种整型数据.单精度浮点型.双精度浮点型.逻辑型.字符串型.单元数组.结构体类型和函数句柄.这15种基本数据类型具体如下. 有符号整数型:int8,int1 ...

  9. github修改仓库项目的语言类型

    github是 采用Linguist来自动识别你的代码应该归为哪一类. 解决方法: 我们可以在仓库的根目录下添加.gitattributes文件: ## 使用 `.gitattributes` 配置文 ...

  10. ARP是如何工作的?

    我们知道,当我们在浏览器里面输入网址时,DNS服务器会自动把它解析为IP地址,浏览器实际上查找的是IP地址而不是网址.那么IP地址是如何转换为第二层物理地址(即MAC地址)的呢? 在局域网中,这是通过 ...