Codeforces 629D Babaei and Birthday Cake(线段树优化dp)
题意:
n个蛋糕编号从小到大编号,j号蛋糕可以放在i号上面,当且仅当j的体积严格大于i且i<j,问最终可得的最大蛋糕体积。
分析:
实质为求最长上升子序列问题,设dp[i]从头开始到第i位的最长子序列长度,可以想到O(n2)的做法,状态转移方程:
dp[i] = max(dp[j], j >= 0 && j < i && v[j] < v[i]) + v[i];
但是n可达1e5,这样做会超时。。。
那么如何快速的获取满足v[j]小于v[i]的最大的dp[j]呢?可以先将所有蛋糕体积进行离散化,用在排序后的数组的位置pos作为线段树下标,用线段树维护区间内最大的dp值,获取最大值时只需查询[0,pos)区间的dp最大值,时间复杂度为O(logn)。
那么这样能否确保是按标号顺序进行叠放的呢?由于我们是从0到n−1进行遍历,排在后面的蛋糕,即使体积比当前蛋糕小,但是dp值并未更新,仍然为0,当前蛋糕是肯定不会选择放在它上面的~~~~
代码:
#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;//[)
const int maxm = 100005, maxn = maxm<<2, INF = 0x3fffffff;
#define pi acos(-1.0)
typedef long long ll;
ll dp[maxn];
ll v[maxm], tv[maxm];
void build(int k, int l, int r)
{
dp[k] = 0;
if(l == r - 1) return;
int mid = (l + r) / 2;
build(2 * k + 1, l, mid);
build(2 * k + 2, mid, r);
}
void update(int num, ll x, int k, int l, int r)
{
dp[k] = max(dp[k], x);
if(l == r - 1) return;
int mid = (l + r)/2;
if(mid > num)
update(num, x, k * 2 + 1, l, mid);
else
update(num, x, k * 2 + 2, mid, r);
}
ll query(int a, int b, int k, int l, int r)
{
if(a >= r||b <= l) return 0;
else if(a <= l && b >= r) return dp[k];
else{
int mid = (l + r) / 2;
ll ta = query(a, b, k * 2 + 1, l, mid);
ll tb = query(a, b, k * 2 + 2, mid, r);
return max(ta, tb);
}
}
int main (void)
{
int n;scanf("%d",&n);
int r, h;
for(int i = 0; i < n; i++){
scanf("%d%d",&r,&h);
tv[i] = v[i] =(ll) r * r * h;
}
sort(tv, tv + n);
int tot = unique(tv, tv + n) - tv;
build(0, 0, tot);
ll res = 0;
for(int i = 0; i < n; i++){
int pos = lower_bound(tv, tv + tot, v[i]) - tv;
ll tmp = query(0, pos, 0, 0, tot) + v[i];
res = max(res, tmp);
update(pos, tmp, 0, 0, tot);
}
printf("%.10lf\n", res * pi);
return 0;
}
Codeforces 629D Babaei and Birthday Cake(线段树优化dp)的更多相关文章
- Codeforces Round #426 (Div. 2) D 线段树优化dp
D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- Codeforces Round #343 (Div. 2) D. Babaei and Birthday Cake 线段树维护dp
D. Babaei and Birthday Cake 题目连接: http://www.codeforces.com/contest/629/problem/D Description As you ...
- Codeforces 629D Babaei and Birthday Cake(树状数组优化dp)
题意: 线段树做法 分析: 因为每次都是在当前位置的前缀区间查询最大值,所以可以直接用树状数组优化.比线段树快了12ms~ 代码: #include<cstdio> #include< ...
- D - The Bakery CodeForces - 834D 线段树优化dp···
D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...
- Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)
Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...
- BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】
BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...
- [AGC011F] Train Service Planning [线段树优化dp+思维]
思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...
- 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp
题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...
- POJ 2376 Cleaning Shifts (线段树优化DP)
题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数 题目传送门 线段树优化$DP$裸题.. 先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里 ...
- 洛谷$P2605\ [ZJOI2010]$基站选址 线段树优化$dp$
正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示 ...
随机推荐
- AJPFX:关于面向对象的封装
1.回顾 面向对象 -- 注重的是结果,强调的是具备功能的对象. 面向过程 -- 强调的是函数,注重的实现的过程. 函数:对功能的封装. ...
- 用pycharm+django开发web项目
pycharm是python的一个商业的集成开发工具,本人感觉做python开发还是很好用的,django是一个很流行的python web开源框架,本文就是使用pycharm+django来开发py ...
- Windows 如何使用telnet管理虚拟机Linux
Linux远程登录的工具很多,如putty,SecureCRT…… 其实借助Windows的telnet工具就可以在命令提示符轻松的登录到Linux系统进行操作了. 虽然telnet很简单,但还是要进 ...
- android 设置跳转
android.provider.Settings. 1. ACTION_ACCESSIBILITY_SETTINGS : // 跳转系统的辅助功能界面 Intent ...
- UI概念体系要素
结构.渲染.交互.数据. 要素.呈现.交互 1)UI(组成)要素:结构 2)布局: 3)渲染: 4)事件处理: 5)数据:
- Java 斜杠 与 反斜杠
除号 /(数字键盘的斜杠)网址 /(数字键盘的斜杠)文件地址 \转义 \正则表达式 \
- Filter简介
Filter也称之为过滤器,它是Servlet技术中最激动人心的技术,WEB开发人员通过Filter技术,对web服务器管理的所有web资源:例如Jsp, Servlet, 静态图片文件或静态 htm ...
- bootstrap-table的一些基本使用及表内编辑的实现
最近工作需要接触了bootstrap-table 所以研究了一下,并做了笔记,红色位置要特别注意 前端主要使用了 jquery bootstrap-table bootstrap-edittable ...
- 编译压缩代码 MFCompress-src-1.01 :对‘***’未定义的引用
提示 MFCompressD.o:在函数‘main’中:MFCompressD.c:(.text.startup+0x34a): 警告: the use of `tempnam' is dangero ...
- SVN文件库移植(转)
SVN文件库移植(转) 分类: 项目管理2013-04-19 11:06 161人阅读 评论(0) 收藏 举报 公司以前用的SVN是安装在windows2003下,用了一年多,现在大家觉得很慢,强烈 ...