Luogu P1069细胞分裂【分解质因数/数论】By cellur925
发现这题真的坑超多啊...调了一晚上终于过了...我好菜啊qwq。
题意说的比较明白,让你求满足(si^k)%(m1^m2)==0的最小k值。然后看数据范围我们知道,我们肯定不能暴力的判断,需要应用到算术基本定理的内容。
我的思路:把m1分解质因数,拆成算术基本定理的形式,再把每个质因数的个数乘上m2.
之后对于每个细胞,我们也将他分解质因数。显然,m1的质因数在si中必须出现,否则消不掉也就不能整除。之后我们找哪个质因数被削掉需要分裂的次数最多,这个次数作为这个细胞的次数。(这里思路有点偏差,算被削掉需要分裂的次数时,是下除上而不是下减上。因为是将si进行乘方。而且还要判断是否能整除,不能整除还要加1)
至于无解的情况,记录一个step,如果每个细胞都有不存在试管质因子的情况,则step++,最后若step==n判定无解。
思路看起来比较清晰的...不过昨天手残导致了许多错误233
现列举如下:
1. 炸内存。原因是在用细胞质因子与试管质因子逐渐逼近时没有判断边界
2. 由于用到 了许多数组,把数组名自己搞混了==
3. 变量名(循环的ij)搞混了
4. 分解质因数部分板子敲错了,最后应为(m>1),否则遇到平方数就会很不好搞
5. 对特殊情况的考虑:m1=1的时候不需要培养时间,答案为0;si=1时这个细胞不可用。
6. 每次检验完一个细胞恢复初值
Code
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath> using namespace std; int n,cnt,hu;
int m1,m2,ans=0x7fffffff,num,step;
int cell[],pm1[],cm1[],ps[],cs[];
bool vis[]; void init()
{
num=;
memset(vis,,sizeof(vis));
memset(cs,,sizeof(cs));
} int main()
{
// freopen("1.in","r",stdin);
scanf("%d",&n);
scanf("%d%d",&m1,&m2);
if(m1==) {printf("");return ;}
for(int i=;i<=n;i++) scanf("%d",&cell[i]);
for(int i=;i<=sqrt(m1);i++)
if(m1%i==)
{
pm1[++cnt]=i,cm1[cnt]=;
while(m1%i==) m1/=i,cm1[cnt]++;
}
if(m1>) pm1[++cnt]=m1,cm1[cnt]++;
for(int i=;i<=cnt;i++) cm1[i]*=m2;
for(int i=;i<=n;i++)
{
int renew=;
int tmp=cell[i];
if(tmp==) {step++;continue;}
bool flag=;
for(int j=;j<=sqrt(tmp);j++)
if(tmp%j==)
{
vis[j]=;
ps[++num]=j,cs[num]=;
while(tmp%j==) tmp/=j,cs[num]++;
}
if(tmp>)
{
vis[tmp]=;
ps[++num]=tmp;cs[num]++;
}
for(int j=;j<=cnt;j++) if(!vis[pm1[j]]) {step++;flag=;break;}
if(flag) {init();continue;}
int head=;
for(int j=;j<=cnt;j++)
{
while(ps[head]!=pm1[j]&&head<num) head++;
if(cm1[j]%cs[head]==) renew=max(renew,cm1[j]/cs[head]);
else renew=max(renew,cm1[j]/cs[head]+);
}
// printf("%d:%d\n",i,renew);hu++;
ans=min(ans,renew);
init();
}
if(step==n) printf("-1");
else printf("%d",ans);
return ;
}
* Update 关于复杂度的问题
因为我是把每个细胞分解质因数,所以复杂度可能达到O(n*sqrt(si)),si是2e9级别,n是10000级别。开始我还怀疑了自己的复杂度。
后来经各路dalao指点,发现其实筛出m1的素数那么一搞也行,复杂度就可行了。(可能本题数据太弱所以我也过了?逃)
Luogu P1069细胞分裂【分解质因数/数论】By cellur925的更多相关文章
- luogu P1069 细胞分裂
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家.现在,他正在为一个细胞实 验做准备工作:培养细胞样本. Hanks 博士手里现在有 N 种细胞,编号从 1~N,一个 ...
- P1069 细胞分裂
P1069 细胞分裂 考虑质因数分解 先将m1,质因数分解后再根据数学定理将所有质数的质数全乘m2 然后将输入的数据相同处理,再判断 顺便说一下判断规矩 1肯定不行 如果分解后有没有m1质因数分解中的 ...
- P1069 细胞分裂——数学题,质因数分解
P1069 细胞分裂 我们求的就是(x^k)|(m1^m2) k的最小值: 先给m1分解质因数,再给每个细胞分解: 如果m1有的质因数,细胞没有就跳过: 否则就记录答案: 注意整数除法下取整的原则: ...
- 洛谷 P1069 细胞分裂 解题报告
P1069 细胞分裂 题目描述 \(Hanks\)博士是\(BT\) (\(Bio-Tech\),生物技术) 领域的知名专家.现在,他正在为一个细胞实验做准备工作:培养细胞样本. \(Hanks\) ...
- 洛谷—— P1069 细胞分裂
https://www.luogu.org/problem/show?pid=1069#sub 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家.现在,他正在为一个细 ...
- 【洛谷P1069 细胞分裂】
题目链接 首先,光看题就觉得它很扯淡(你哪里来这么多的钱来买试管) 根据某位已经ak过ioi的名为ych的神仙说(一看就是数学题,一看就需要因式分解,emm,我果然没有发现美的眼睛qwq) 那么我们就 ...
- 细胞分裂(洛谷 P1069)
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家.现在,他正在为一个细胞实 验做准备工作:培养细胞样本. Hanks 博士手里现在有 N 种细胞,编号从 1~N,一个 ...
- [CodeForces - 1225D]Power Products 【数论】 【分解质因数】
[CodeForces - 1225D]Power Products [数论] [分解质因数] 标签:题解 codeforces题解 数论 题目描述 Time limit 2000 ms Memory ...
- Aladdin and the Flying Carpet (LightOJ - 1341)【简单数论】【算术基本定理】【分解质因数】
Aladdin and the Flying Carpet (LightOJ - 1341)[简单数论][算术基本定理][分解质因数](未完成) 标签:入门讲座题解 数论 题目描述 It's said ...
随机推荐
- 在linux中安装.sh 文件
有一些linux的安装包是.sh后缀的安装包,可以通过$bash xxx.sh的命令来进行安装.
- HTML URL编码规则
将空格转换为加号(+) 对0-9,a-z,A-Z之间的字符保持不变 对于所有其他的字符,用这个字符的当前字符集编码在内存中的十六进制格式表示,并在每个字节前加上一个百分号(%).如字符“+”用%2B表 ...
- 【转载】C#扫盲之:==/Equals /ReferenceEquals 异同的总结,相等性你真的知道吗?
1.前言 == Equals ReferenceEquals 三个相等性测试,是.NET提供给程序员使用的三个方法,他们之间有什么联系和区别,你真的仔细研究过?虽然之前也多多少少知道一点,但是有时候又 ...
- angularjs学习之八(angularjs中isolate scope的使用)
angular js中指令directive有个特别实用的东西,那就是 isolate scope (被隔离的scope) 关于详细他和全局的scope 有什么差别.能够參考以下这篇博文: Angul ...
- 嵌入式开发之davinci--- 8168 question about capture PAL on 8168
http://e2e.ti.com/support/dsp/davinci_digital_media_processors/f/717/t/340483.aspx?pi199607=2
- 【Android】Android聊天机器人实现
昨天看到一个Android视频教程讲图灵机器人.那个API接口用起来还是挺方便的,就准备自己动手做一个了. 另外自己还使用了高德地图的API接口用于定位(曾经用过高德的接口,比X度方便) 大体流程: ...
- REST – PUT vs POST
REST – PUT vs POST – REST API Tutorial https://restfulapi.net/rest-put-vs-post/ REST – PUT vs POST I ...
- NSString类的方法实现
创建一个新字符串并将其设置为 path 指定的文件的内容,使用字符编码enc,在error上返回错误 + (id)stringWithContentsOfURL:(NSURL *)url encodi ...
- uCOS-II模拟(VS2010&WIN32)
转自http://www.amobbs.com/thread-5462878-1-1.html 自学uCOS-II源码,在论坛上上看到大神在WIN7 Visual Studio 2010环境下调试uC ...
- POJ1797 Heavy Transportation —— 最短路变形
题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K T ...