Hmz 的女装

Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)

Total Submission(s): 190 Accepted Submission(s): 92

Problem Description

Hmz为了女装,想给自己做一个长度为n的花环。现在有k种花可以选取,且花环上相邻花的种类不能相同。

Hmz想知道,如果他要求第l朵花和第r朵花颜色相同,做花环的方案数是多少。这个答案可能会很大,你只要输出答案对10^9+7取模的结果即可。

Input

第一行三个整数n,m,k(1≤n≤100000,1≤m≤100000,1≤k≤100000)

接下来m行,每行两个整数l,r,表示要求第l朵花和第r朵花颜色相同。保证l≠r且 |(r-l) mod n| ≠1.

Output

输出m行。对于每一个询问输出一个整数,表示做花环的方案数对10^9+7取模的结果。

Sample Input

8 3 2

1 4

2 6

1 3

8 3 3

1 4

2 6

1 3

Sample Output

0

2

2

60

108

132

题意

分析

这道题蛮难想的,也许是我做过的题太少

我们可以观察到两个相同点将环分成两段,这两段的花分配的种数互不影响(请仔细思考)。对于其中任意一段,我们考虑从一端开始扩展,我们设置d[i][0]为长度i(都不包含固定端),第i朵花与固定端相同的方案数。d[i][1]为长度i,第i朵花与固定端颜色相同的方案数

推出

dp[i][0]=dp[i-1][1];

dp[i][1]=dp[i-1][1](k-2)+dp[i][0](k-1)

由于要与固定端不同,只要最后去dp[len][1]即可,最后答案为dp[len1][1]dp[len2][1]k即可,k为固定端颜色可取种数

推荐相似blog zchahaha

trick

1.注意取模

代码

#include <bits/stdc++.h>
using namespace std; #define ll long long
#define F(i,a,b) for(int i=a;i<=b;++i)
#define R(i,a,b) for(int i=a;i<b;++i)
#define mem(a,b) memset(a,b,sizeof(a)) const ll mod = 1e9+7;
int n,m,k;
int l,r;
ll dp[100100][2]; int main()
{
while(scanf("%d %d %d",&n,&m,&k)!=EOF)
{
mem(dp,0);
dp[1][0]=0;dp[1][1]=k-1;
for(int i=2;i<=n;++i)
{
dp[i][1]=(dp[i-1][1]*(k-2)+dp[i-1][0]*(k-1))%mod;
dp[i][0]=dp[i-1][1];
}
F(i,1,m)
{
int l,r;
scanf("%d %d",&l,&r); if(l>r) swap(l,r);
ll ans;
int len1=r-l-1,len2=(n-r+l-1);
ans=k*dp[len1][1]%mod*dp[len2][1]%mod;
printf("%I64d\n",ans%mod);
}
}
return 0;
}

Hmz 的女装(递推)的更多相关文章

  1. 【BZOJ-2476】战场的数目 矩阵乘法 + 递推

    2476: 战场的数目 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 58  Solved: 38[Submit][Status][Discuss] D ...

  2. 从一道NOI练习题说递推和递归

    一.递推: 所谓递推,简单理解就是推导数列的通项公式.先举一个简单的例子(另一个NOI练习题,但不是这次要解的问题): 楼梯有n(100 > n > 0)阶台阶,上楼时可以一步上1阶,也可 ...

  3. Flags-Ural1225简单递推

    Time limit: 1.0 second Memory limit: 64 MB On the Day of the Flag of Russia a shop-owner decided to ...

  4. 利用Cayley-Hamilton theorem 优化矩阵线性递推

    平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方 ...

  5. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  6. 简单递推 HDU-2108

    要成为一个ACMer,就是要不断学习,不断刷题...最近写了一些递推,发现递推规律还是挺明显的,最简单的斐波那契函数(爬楼梯问题),这个大家应该都会,看一点稍微进阶了一点的,不是简单的v[i] = v ...

  7. [ACM_动态规划] 数字三角形(数塔)_递推_记忆化搜索

    1.直接用递归函数计算状态转移方程,效率十分低下,可以考虑用递推方法,其实就是“正着推导,逆着计算” #include<iostream> #include<algorithm> ...

  8. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  9. openjudge1768 最大子矩阵[二维前缀和or递推|DP]

    总时间限制:  1000ms 内存限制:  65536kB 描述 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩阵. 比如,如下4 * 4的 ...

随机推荐

  1. Android6.0权限管理以及使用权限该注意的地方

    Android 6.0 Marshmallow首次增加了执行时权限管理,这对用户来说,能够更好的了解.控 制 app 涉及到的权限.然而对开发人员来说却是一件比較蛋疼的事情.须要兼容适配,并保证程序功 ...

  2. Android中View自己定义XML属性具体解释以及R.attr与R.styleable的差别

    为View加入自己定义XML属性 Android中的各种Widget都提供了非常多XML属性,我们能够利用这些XML属性在layout文件里为Widget的属性赋值. 例如以下所看到的: <Te ...

  3. 凝视转换(c转换为c++)

    C语言凝视->C++凝视即/*xxxxx*/->//xxxxx 在转换凝视前我们先了解一个概念:什么是有限状态机? 有限状态机FSM是软件上经常使用的一种处理方法,它把复杂的控制逻辑分解成 ...

  4. RecyclerViewDemo

    https://github.com/eltld/RecyclerViewDemo

  5. 李洪强iOS开发之- 点击屏幕遮挡键盘

    李洪强iOS开发之- 点击屏幕遮挡键盘 实现的效果:  01 - 给当前的view添加点击事件,使点击屏幕的时候,让键盘退出 /** * 点击屏幕 隐藏键盘 * * @param tap */-(vo ...

  6. FIR300M刷openwrt

    淘宝看到一款FIR300M路由器,当时只要19.9元.图便宜就买了. Hardware Architecture: MIPS Vendor: MediaTek (Ralink) Bootloader: ...

  7. 【iOS系列】-自定义Modar动画

    [iOS系列]-自定义Modar动画.md 我们需要做的最终的modar动画的效果是这样的, 就是点击cell,cell发生位移,慢慢的到第二个界面上的.为了做出这样的动画效果,我们需要以下的知识. ...

  8. 文件宝iOS/iPhone/iPad客户端简介

    App Store地址:https://itunes.apple.com/cn/app/id1023365565?mt=8 文件宝-装机必备的文件管家,专业的rar-zip 解压工具,局域网看片神器, ...

  9. Vue 之 npm 及 安装的包

    1  npm相关 1.1 npm 是 基于Node.js 的,所以要先安装Node.js 在浏览器地址栏输入https://nodejs.org/en/, 进入Node.js官网后,点击下载左边的稳定 ...

  10. InspectIT_EUM 实现原理概述

    在Git上查看 InspectIT 实现原理概述: 实现原理详解:  1.jsAgent如何注入到浏览器 通过ASM框架修改HttpService.service()方法,加入相关逻辑,对每一个Htt ...