bzoj 3173: [Tjoi2013]最长上升子序列【dp+线段树】
我也不知道为什么把题看成以插入点为结尾的最长生生子序列……还WA了好几次
先把这个序列最后的样子求出来,具体就是倒着做,用线段树维护点数,最开始所有点都是1,然后线段树上二分找到当前数的位置,把这个点标为0(相当于对于这之前的序列这个点是不存在的),把每个数的位置记为p[i]
然后用另一颗线段树维护每个位置上的LIS,根据时间序,每次插入数的时候求一下以他结尾的LIS然后放进线段树上对应的p[i](因为按照数从小到大所以直接查这个数位置之前的即可),然后再取全部点的max即可
#include<iostream>
#include<cstdio>
using namespace std;
const int N=100005;
int n,m,a[N],p[N],f[N];
struct xds
{
int l,r,s,mx;
}t[N<<2];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void jian(int ro,int l,int r)
{
t[ro].l=l,t[ro].r=r,t[ro].s=1;
if(l==r)
return;
int mid=(l+r)>>1;
jian(ro<<1,l,mid);
jian(ro<<1|1,mid+1,r);
t[ro].s=t[ro<<1].s+t[ro<<1|1].s;
}
int ef(int ro,int k)
{
if(t[ro].l==t[ro].r)
return t[ro].l;
if(t[ro<<1].s>=k)
return ef(ro<<1,k);
else
return ef(ro<<1|1,k-t[ro<<1].s);
}
void gai(int ro,int p)
{
if(t[ro].l==t[ro].r)
{
t[ro].s=0;
return;
}
int mid=(t[ro].l+t[ro].r)>>1;
if(p<=mid)
gai(ro<<1,p);
else
gai(ro<<1|1,p);
t[ro].s=t[ro<<1].s+t[ro<<1|1].s;
}
void build(int ro,int l,int r)
{
t[ro].l=l,t[ro].r=r,t[ro].mx=0;
if(l==r)
return;
int mid=(l+r)>>1;
build(ro<<1,l,mid);
build(ro<<1|1,mid+1,r);
}
int ques(int ro,int l,int r)
{
if(t[ro].l==l&&t[ro].r==r)
return t[ro].mx;
int mid=(t[ro].l+t[ro].r)>>1;
if(r<=mid)
return ques(ro<<1,l,r);
else if(l>mid)
return ques(ro<<1|1,l,r);
else
return max(ques(ro<<1,l,mid),ques(ro<<1|1,mid+1,r));
}
void update(int ro,int p,int v)
{
if(t[ro].l==t[ro].r)
{
t[ro].mx=v;
return;
}
int mid=(t[ro].l+t[ro].r)>>1;
if(p<=mid)
update(ro<<1,p,v);
else
update(ro<<1|1,p,v);
t[ro].mx=max(t[ro<<1].mx,t[ro<<1|1].mx);
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
a[i]=read()+1;
jian(1,1,n);
for(int i=n;i>=1;i--)
{
p[i]=ef(1,a[i]);
gai(1,p[i]);
}
build(1,1,n);
for(int i=1;i<=n;i++)
{
int nw=ques(1,1,p[i])+1;
update(1,p[i],nw);
printf("%d\n",ques(1,1,n));
}
return 0;
}
bzoj 3173: [Tjoi2013]最长上升子序列【dp+线段树】的更多相关文章
- BZOJ 3173: [Tjoi2013]最长上升子序列 [splay DP]
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1613 Solved: 839[Submit][St ...
- BZOJ 3173: [Tjoi2013]最长上升子序列
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1524 Solved: 797[Submit][St ...
- BZOJ 3173: [Tjoi2013]最长上升子序列( BST + LIS )
因为是从1~n插入的, 慢插入的对之前的没有影响, 所以我们可以用平衡树维护, 弄出最后的序列然后跑LIS就OK了 O(nlogn) --------------------------------- ...
- Bzoj 3173: [Tjoi2013]最长上升子序列 平衡树,Treap,二分,树的序遍历
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1183 Solved: 610[Submit][St ...
- bzoj 3173 [Tjoi2013]最长上升子序列 (treap模拟+lis)
[Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2213 Solved: 1119[Submit][Status] ...
- BZOJ 3173 [Tjoi2013] 最长上升子序列 解题报告
这个题感觉比较简单,但却比较容易想残.. 我不会用树状数组求这个原排列,于是我只好用线段树...毕竟 Gromah 果弱马. 我们可以直接依次求出原排列的元素,每次找到最小并且最靠右的那个元素,假设这 ...
- BZOJ 3173: [Tjoi2013]最长上升子序列 (线段树+BIT)
先用线段树预处理出每个数最终的位置.然后用BIT维护最长上升子序列就行了. 用线段树O(nlogn)O(nlogn)O(nlogn)预处理就直接倒着做,每次删去对应位置的数.具体看代码 CODE #i ...
- BZOJ 3173: [Tjoi2013]最长上升子序列 Splay
一眼切~ 重点是按照 $1$~$n$ 的顺序插入每一个数,这样的话就简单了. #include <cstdio> #include <algorithm> #define N ...
- bzoj千题计划316:bzoj3173: [Tjoi2013]最长上升子序列(二分+树状数组)
https://www.lydsy.com/JudgeOnline/problem.php?id=3173 插入的数是以递增的顺序插入的 这说明如果倒过来考虑,那么从最后一个插入的开始删除,不会对以某 ...
随机推荐
- tomcat 实现域名crm.test.com訪问
**tomcat 上下文.实现的效果.是在浏览器输入ip或者域名能直接訪问.不用输入项目project名字 正常初始化都是http://10.243.12.34:8080/plcrm.要变成 crm. ...
- Android开发Tips(3)
欢迎Follow我的GitHub, 关注我的CSDN. 我会介绍关于Android的一些有趣的小知识点. 本文是第三篇, 其余第一篇, 第二篇. imageMogr2/auto-orient/stri ...
- 使用$.when()解决AJAX异步难题之:多个ajax操作进行逻辑与(and)
上一篇文章"JQuery.deferred提供的promise解决方式",提到了javascript异步操作的3个问题,以及javascript Promise入门.如今我们看下怎 ...
- Java Unit Testing - JUnit & TestNG
转自https://www3.ntu.edu.sg/home/ehchua/programming/java/JavaUnitTesting.html yet another insignifican ...
- LeetCode(11)题解: Container With Most Water
https://leetcode.com/problems/container-with-most-water/ 题目: Given n non-negative integers a1, a2, . ...
- HDU 6096 String 排序 + 线段树 + 扫描线
String Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others) Problem De ...
- RSA前端JS加密,后端JAVA解密实现
用RSA非对称加密方式实现.后台生成rsa密钥对,然后在页面设置rsa公钥,提交时用公钥加密密码,生成的密文传到后台,后台再用私钥解密,获取密码明文.这样客户端只需要知道rsa加密方式和公钥,前台不知 ...
- IDHTTP用法详解 good
一.IDHTTP的基本用法 IDHttp和WebBrowser一样,都可以实现抓取远端网页的功能,但是http方式更快.更节约资源,缺点是需要手动维护cook,连接等 IDHttp的创建,需要引入ID ...
- Hihocoder #1098 : 最小生成树二·Kruskal算法 ( *【模板】 )
#1098 : 最小生成树二·Kruscal算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用 ...
- import data from excel to sql server
https://www.c-sharpcorner.com/article/how-to-import-excel-data-in-sql-server-2014/ 需要注意的是,第一次是选择sour ...