把add传参里的double写成int我也是石乐志……

首先这个东西长得就很01分数规划

然后我不会证为什么没有8字环,我们假装他没有

那么设len为环长

\[ans \leq \frac{\sum_{i=1}^{len}f_i}{\sum_{i=1}^{len}t_i}
\]

\[ans*\sum_{i=1}^{len}t_i \leq \sum_{i=1}^{len}f_i
\]

\[\sum_{i=1}^{len}ans*t_i-f_i \leq 0
\]

二分这个ans,把每条边的边权赋值成\( ans*t_i-f_i \)fi是i这条边的起点点权或者终点点权都可以

然后用dfs版的spfa找正环来判断当前ans的可行性

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=1005,M=5005;
const double eps=1e-5;
int n,m,h[N],cnt,x[M],y[M];
double a[N],z[M],dis[N];
bool f,v[N];
struct qwe
{
int ne,to;
double va;
}e[M];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,double w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void spfa(int u)
{
if(f)
return;
v[u]=1;
for(int i=h[u];i&&!f;i=e[i].ne)
if(dis[e[i].to]<dis[u]+e[i].va)
{
dis[e[i].to]=dis[u]+e[i].va;
if(v[e[i].to])
{
f=1;
return;
}
else
spfa(e[i].to);
}
v[u]=0;
}
bool ok(double mid)
{
cnt=0;f=0;
memset(h,0,sizeof(h));
memset(v,0,sizeof(v));
memset(dis,0,sizeof(dis));
for(int i=1;i<=m;i++)
add(x[i],y[i],a[x[i]]-mid*z[i]);
for(int i=1;i<=n;i++)
{
spfa(i);
if(f)
return 1;
}
return 0;
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
a[i]=read();
for(int i=1;i<=m;i++)
x[i]=read(),y[i]=read(),z[i]=read();
double l=0,r=1e6,ans=0;
while(r-l>eps)
{
double mid=(l+r)/2.0;
if(ok(mid))
l=mid,ans=mid;
else
r=mid;
}
printf("%.2lf\n",ans);
return 0;
}

bzoj 1690: [Usaco2007 Dec]奶牛的旅行【01分数规划+spfa】的更多相关文章

  1. 【BZOJ】1690: [Usaco2007 Dec]奶牛的旅行(分数规划+spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1690 第一题不是水题的题.. 分数规划.. T-T 百度吧..http://blog.csdn.ne ...

  2. bzoj1690:[Usaco2007 Dec]奶牛的旅行(分数规划+spfa判负环)

    PS:此题数组名皆引用:戳我 题目大意:有n个点m条有向边的图,边上有花费,点上有收益,点可以多次经过,但是收益不叠加,边也可以多次经过,但是费用叠加.求一个环使得收益和/花费和最大,输出这个比值. ...

  3. BZOJ 1690: [Usaco2007 Dec]奶牛的旅行

    Description 作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天.旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇. 很幸运地,奶牛们找到了一张详细的城 ...

  4. bzoj 1690: [Usaco2007 Dec]奶牛的旅行——分数规划+spfa判负环

    Description 作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天.旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得的闲暇. 很幸运地,奶牛们找到了一张详细的城 ...

  5. bzoj1690:[Usaco2007 Dec]奶牛的旅行 (分数规划 && 二分 && spfa)

    用dfs优化的spfa判环很快啦 分数规划的题目啦 二分寻找最优值,用spfa判断能不能使 Σ(mid * t - p) > 0 最优的情况只能有一个环 因为如果有两个环,两个环都可以作为奶牛的 ...

  6. 【BZOJ】1690: [Usaco2007 Dec]奶牛的旅行

    [算法]01分数规划-最优比率环 [题意]给定有向图,点有收益,边有代价,重复经过的话收益不叠加而代价叠加,求从任意点开始最后回归该点的(收益/代价)最大. [题解] 和普通的分数规划不同,这里的方案 ...

  7. BZOJ1690: [Usaco2007 Dec]奶牛的旅行

    1690: [Usaco2007 Dec]奶牛的旅行 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 552  Solved: 286[Submit][St ...

  8. BZOJ1690 Usaco2007 Dec 奶牛的旅行 【01分数规划】

    BZOJ1690 Usaco2007 Dec 奶牛的旅行 题目描述 作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天.旅行的前夜,奶牛们在兴奋地讨论如何最好地享受这难得 ...

  9. bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]

    3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...

随机推荐

  1. Vue页面骨架屏(一)

    在开发webapp的时候总是会受到首屏加载时间过长的影响,主流的解决方法是在载入完成之前显示loading图效果,而一些大公司会配置一套服务端渲染的架构来解决这个问题.考虑到ssr所要解决的一系列问题 ...

  2. 原生JS版和jQuery 版实现文件上传功能

    <!doctype html> <html lang="zh"> <head> <meta charset="utf-8&quo ...

  3. BNUOJ 1585 Girls and Boys

    Girls and Boys Time Limit: 5000ms Memory Limit: 10000KB This problem will be judged on PKU. Original ...

  4. Leetcode 213.大家劫舍II

    打家劫舍II 你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金.这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的.同时,相邻的房屋装有相互连通的防盗系统,如果两 ...

  5. mongodb shell 无法删除问题

    1.MongoDB Shell中退格键使用的问题. 利用SecureCRT工具访问linux的时候,在使用MongoDB的交互式shell的时候,退格键(Backspace)无法使用,导致无 法修改输 ...

  6. noip模拟赛 仓库

    分析:非常像货车运输那道题.先求一下最大生成树.求完之后会发现并不好处理.通常这类求生成树的题目不会就分析kruscal算法的性质.每往最大生成树中加一条边,如果配重大于这条边权,那么这条边所连的两个 ...

  7. Redis 命令与连接【十一】

    ---------------------Redis 命令--------------- Redis 命令用于在 redis 服务上执行操作. 要在 redis 服务上执行命令需要一个 redis 客 ...

  8. Bootstrap官网文档查询

    Ctrl+F 在出现的小搜索框里面输入要查找的东西.回车即可!

  9. 选择器的使用(empty选择器)

    <!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml"><head><meta ...

  10. swift编程语言基础教程 中文版

    swift编程语言基础教程 中文版 http://download.csdn.net/detail/u014036026/7845491