bzoj3884
http://www.lydsy.com/JudgeOnline/problem.php?id=3884
拓展欧拉定理
http://blog.csdn.net/Pedro_Lee/article/details/51458773这篇写的不错
我不会用latex。。。就不写了
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = ;
ll p;
int phi[N], pri[N], mark[N];
void Init()
{
phi[] = ;
for(int i = ; i <= ; ++i)
{
if(!mark[i])
{
pri[++pri[]] = i;
phi[i] = i - ;
}
for(int j = ; j <= pri[] && (ll)i * (ll)pri[j] <= ; ++j)
{
mark[i * pri[j]] = ;
if(i % pri[j] == )
{
phi[i * pri[j]] = phi[i] * pri[j];
break;
}
phi[i * pri[j]] = phi[i] * (pri[j] - );
}
}
}
inline ll power(ll x, ll t, ll p)
{
ll ret = % p; x %= p;
for(; t; t >>= , x = x * x % p) if(t & ) ret = ret * x % p;
return ret;
}
ll f(ll x) // 2^2^2...%p=
{
if(x == ) return ;
return power(2ll, f(phi[x]) + (ll)phi[x], x);
}
int main()
{
Init();
int T; scanf("%d", &T);
while(T--)
{
scanf("%lld", &p);
printf("%lld\n", f(p));
}
return ;
}
bzoj3884的更多相关文章
- 【bzoj3884】 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 (题目链接) 题意 求 Solution 解决的关键: 当${n>φ(p)}$,有$${ ...
- 【BZOJ3884】上帝与集合的正确用法(欧拉定理,数论)
[BZOJ3884]上帝与集合的正确用法(欧拉定理,数论) 题面 BZOJ 题解 我们有欧拉定理: 当\(b \perp p\)时 \[a^b≡a^{b\%\varphi(p)}\pmod p \] ...
- bzoj3884 上帝与集合的正确用法
a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
- 【BZOJ3884】【降幂大法】上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元” ...
- bzoj3884 上帝的集合
根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α α ”.“α α 被定义为“元”构成的集合.容 ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- BZOJ3884(SummerTrainingDay04-C 欧拉定理)
上帝与集合的正确用法 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元 ...
- bzoj3884上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- bzoj千题计划264:bzoj3884: 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...
随机推荐
- 查看FPM在你的机子上的平均内存占用情况
ps --no-headers -o "rss,cmd" -C php-fpm | awk '{ sum+=$1 } END { printf ("%d%s\n" ...
- python3 监控代码变化 自动重启 提高开发效率
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'Michael Liao' import os, sys, time, sub ...
- 全国高校json数据包(复python解析代码)
由于这段时间需要有关学校的三级联动插件,找了很久没有找到合适的,所以去教育部官网下载了一份全国普通高校名单(2019年), 这里附上解析该xls文件的代码 import xlrd import jso ...
- Python爬虫例子(笔记,不适合参考,愿意看的可以看看)
话不多说,直接上代码: import re import csv #爬虫的一个小例子,爬的是百度贴吧(网页版)某个帖子的各个楼层的用户名,发言内容和发言时间(使用到了正则表达式) source3.tx ...
- Fiddler基本用法:手机抓包1
Fiddler基本用法以及如何对手机抓包 一.Fiddler是什么? ·一种Web调试工具. ·可以记录所有客户端和服务器的http和https请求. ·允许监视.设置断点.修改输入输出数据. 官方文 ...
- 命令行下设置 PYTHONPATH 来正确运行Python代码
写Python程序,总要使用一些自己使用的库:在运行此类程序的时候,就需要先配置好 PYTHONPATH 环境变量:否则会导致找不到库错误. Windows下,可以写一个bat来简化配置: @ECHO ...
- 【扫描线】HDU 5124 lines
http://acm.hdu.edu.cn/showproblem.php?pid=5124 [题意] 在数轴x上,每次操作都覆盖一个区间的所有点,问被覆盖次数最多的点是覆盖了多少次 [思路] 最简单 ...
- bzoj 2588 Spoj 10628. Count on a tree (可持久化线段树)
Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 7669 Solved: 1894[Submi ...
- hdu - 1151 Air Raid(有向无环图的最小路径覆盖)
http://acm.hdu.edu.cn/showproblem.php?pid=1151 在一个城市里有n个地点和k条道路,道路都是单向的,并且不存在环.(DAG) 现在伞兵需要去n个地点视察,伞 ...
- 选择器的使用(target选择器)
<!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml"><head><meta ...