Strange Way to Express Integers
Time Limit: 1000MS   Memory Limit: 131072K
Total Submissions: 16839   Accepted: 5625

Description

Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input

The input contains multiple test cases. Each test cases consists of some lines.

  • Line 1: Contains the integer k.
  • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

Output

Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

Sample Input

2
8 7
11 9

Sample Output

31

Hint

All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

Source

 
今天最后一个中国剩余定理、、、、、、(还是水体。。。。。)

题目大意: 有一个数mod ri 等于ai  ,求这个数,若求不出来输出“-1”。

代码:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 1000
#define ll long long
using namespace std;
ll n,a[N],m[N];
ll read()
{
    ll x=,f=; char ch=getchar();
    ; ch=getchar();}
    +ch-'; ch=getchar();}
    return x*f;
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
    )
    {
        x=,y=;
        return a;
    }
    ll r=exgcd(b,a%b,x,y),tmp;
    tmp=x,x=y,y=tmp-a/b*y;
    return r;
}
ll crt()
{
    ll a1=a[],m1=m[],a2,m2,c,d;
    ;i<=n;i++)
    {
        m2=m[i],a2=a[i];
        c=a2-a1;ll x=,y=;
        d=exgcd(m1,m2,x,y);
        ;
        x=x*c/d;
        int mod=m2/d;
        x=(mod+x%mod)%mod;
        a1+=x*m1;m1*=mod;
    }
    ) a1+=m1;
    return a1;
}
int main()
{
    while(~scanf("%lld",&n))
    {
        ;i<=n;i++)
         m[i]=read(),a[i]=read();
        printf("%lld\n",crt());
    }
    ;
}

poj——2891 Strange Way to Express Integers的更多相关文章

  1. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  2. [POJ 2891] Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 10907 ...

  3. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  4. poj 2891 Strange Way to Express Integers(中国剩余定理)

    http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...

  5. POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd

    http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...

  6. POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法

    http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 1589 ...

  7. [poj 2891] Strange Way to Express Integers 解题报告(excrt扩展中国剩余定理)

    题目链接:http://poj.org/problem?id=2891 题目大意: 求解同余方程组,不保证模数互质 题解: 扩展中国剩余定理板子题 #include<algorithm> ...

  8. POJ 2891 Strange Way to Express Integers【扩展欧几里德】【模线性方程组】

    求解方程组 X%m1=r1 X%m2=r2 .... X%mn=rn 首先看下两个式子的情况 X%m1=r1 X%m2=r2 联立可得 m1*x+m2*y=r2-r1 用ex_gcd求得一个特解x' ...

  9. POJ 2891 Strange Way to Express Integers(中国剩余定理)

    题目链接 虽然我不懂... #include <cstdio> #include <cstring> #include <map> #include <cma ...

随机推荐

  1. qW3xT.2挖矿病毒处理方案

    我遇到的是一款qW3xT.2的病毒,网上查了一下,好像是挖矿病毒.在此贴一下我找到的关于病毒的资料.这是我的服务器 这篇文章可谓是出自高手之笔,感觉说的很厉害,但是非专业人士的我有点看不懂,看个大概  ...

  2. Ajax 知识点总结

    1.AJAX的优缺点都有什么? 最大的一点是页面无刷新,用户的体验非常好.使用异步方式与服务器通信,具有更加迅速的响应能力.可以把以前一些服务器负担的工作转嫁到客户端,利用客户端闲置的能力来处理,减轻 ...

  3. C#方法的一些规则

    C# 方法 一个方法是把一些相关的语句组织在一起,用来执行一个任务的语句块.每一个 C# 程序至少有一个带有 Main 方法的类. 要使用一个方法,您需要: 定义方法 调用方法 下面是方法的各个元素: ...

  4. Joseph UVA 1452 Jump

    题目传送门 /* 数学:约瑟夫环问题的变形,首先定义f[i]表示剩下i个人时,最后一个选出的人,有个公式:f[i] = (f[i-1] + m) % i f[1] = 0(编号从0开始),那么类似最后 ...

  5. 【转】数据倾斜是多么痛?spark作业/面试/调优必备秘籍

    原博文出自于: http://sanwen.net/a/gqkotbo.html 感谢! 来源:数盟 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性 ...

  6. [ TJOI 2012 ] 防御

    \(\\\) Description 有 \(n\) 人,第 \(i\) 个人有一个护甲值 \(a_i\). 有 \(m\) 次操作,分为以下两种: \(A\ l\ r\ x\) 对编号在 \([l, ...

  7. [ HDOJ 3826 ] Squarefree number

    \(\\\) \(Description\) \(T\)组数据,每次给出一个正整数 \(N\) ,判断其是否能被任意一个完全平方数整除. \(T\le 20,N\le 10^{18}\) \(\\\) ...

  8. 【工具】Github

    项目目录结构设计与git远程仓库的建立 git码云仓库建立:在码云网站上新建组织和项目. 配置sshkey认证和公钥:命令行ssh-keygen -t rsa -C "xxxxx@xxxxx ...

  9. React 篇 Search Bar and content Table

    我们要构建一个模块,其中包含一个内容显示的表格,然后上面有一个提供Search的栏位,并对Search中输入栏进行监听,当有改变的时候,触发Search然后对内容表中的内容进行过滤. Demo Lin ...

  10. 主库binlog(master-log)与从库relay-log的关系

    主库binlog: # at # :: server id end_log_pos CRC32 COMMIT/*!*/; # at # :: server id end_log_pos CRC32 e ...