Fast Matrix Calculation 矩阵快速幂
Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.
Step 1: Calculate a new N*N matrix C = A*B.
Step 2: Calculate M = C^(N*N).
Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’.
Step 4: Calculate the sum of all the elements in M’.
Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.
InputThe input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B.
The end of input is indicated by N = K = 0.OutputFor each case, output the sum of all the elements in M’ in a line.Sample Input
4 2
5 5
4 4
5 4
0 0
4 2 5 5
1 3 1 5
6 3
1 2 3
0 3 0
2 3 4
4 3 2
2 5 5
0 5 0
3 4 5 1 1 0
5 3 2 3 3 2
3 1 5 4 5 2
0 0
Sample Output
14
56 C = A*B
C^1000 = A*(B*A)^999*B 简化到k*k上的矩阵计算方便
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 1007
#define MOD 10000007
#define INF 1000000009
const double eps = 1e-9;
int n, k;
struct Mat
{
int a[10][10];
Mat()
{
memset(a, 0, sizeof(a));
}
Mat operator * (const Mat& rhs)const
{
Mat ret;
for (int i = 0; i < k; i++)
{
for (int j = 0; j < k; j++)
{
if (a[i][j])
{
for (int t = 0; t < k; t++)
{
ret.a[i][t] = (ret.a[i][t] + a[i][j] * rhs.a[j][t]) % 6;
}
}
}
}
return ret;
}
};
Mat fpow(Mat a, int b)
{
Mat ret;
for (int i = 0; i < k; i++)
ret.a[i][i] = 1;
while (b != 0)
{
if (b & 1)
ret = a*ret;
a = a*a;
b /= 2;
}
return ret;
}
int m1[MAXN][7], m2[7][MAXN], ans[MAXN][MAXN], tmp[MAXN][MAXN];
int main()
{
while (scanf("%d%d", &n, &k), n + k)
{
for (int i = 0; i < n; i++)
for (int j = 0; j < k; j++)
scanf("%d", &m1[i][j]);
for (int i = 0; i < k; i++)
for (int j = 0; j < n; j++)
scanf("%d", &m2[i][j]);
Mat M;
for (int i = 0; i < k; i++)
{
for (int j = 0; j < k; j++)
{
for (int t = 0; t < n; t++)
{
M.a[i][j] = (M.a[i][j] + m2[i][t] * m1[t][j])%6;
}
}
}
M = fpow(M, n*n - 1);
memset(tmp, 0, sizeof(tmp));
memset(ans, 0, sizeof(ans));
for (int i = 0; i < n; i++)
{
for (int j = 0; j < k; j++)
{
for (int t = 0; t < k; t++)
tmp[i][j] = (tmp[i][j] + m1[i][t] * M.a[t][j])%6;
}
}
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
for (int t = 0; t < k; t++)
ans[i][j] = (ans[i][j] + tmp[i][t] * m2[t][j])%6;
}
}
int res = 0;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
res += ans[i][j]%6;
printf("%d\n", res);
}
}
Fast Matrix Calculation 矩阵快速幂的更多相关文章
- hdu4965 Fast Matrix Calculation 矩阵快速幂
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...
- HDU 4965 Fast Matrix Calculation 矩阵快速幂
题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...
- hdu 4965 Fast Matrix Calculation(矩阵高速幂)
题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...
- HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂
题目链接:https://vjudge.net/problem/HDU-4965 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Othe ...
- ACM学习历程——HDU5015 233 Matrix(矩阵快速幂)(2014陕西网赛)
Description In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 2 ...
- bzoj 4128: Matrix ——BSGS&&矩阵快速幂&&哈希
题目 给定矩阵A, B和模数p,求最小的正整数x满足 A^x = B(mod p). 分析 与整数的离散对数类似,只不过普通乘法换乘了矩阵乘法. 由于矩阵的求逆麻烦,使用 $A^{km-t} = B( ...
- HDU 4965 Fast Matrix Calculation 矩阵乘法 乘法结合律
一种奇葩的写法,纪念一下当时的RE. #include <iostream> #include <cstdio> #include <cstring> #inclu ...
- hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律
http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...
- HDU - 4965 Fast Matrix Calculation 【矩阵快速幂】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4965 题意 给出两个矩阵 一个A: n * k 一个B: k * n C = A * B M = (A ...
随机推荐
- 最大加权矩形 luogu1719
题目链接:https://www.luogu.org/problemnew/show/P1719 这道题挺好做的 又是一道练前缀和的题 #include <bits/stdc++.h> # ...
- Android 性能优化(22)*性能工具之「Hierarchy Viewer」 Hierarchy Viewer Walkthrough
Hierarchy Viewer Walkthrough 1.In this document Prerequisites Setting the ANDROID_HVPROTO variable W ...
- iOS 项目中的常见文件
iOS的笔记-项目中的常见文件 新建一个项目之后,有那么多的文件,下面介绍一下主要的几个. 1.文件名 (1)AppDelegate UIApplication的代理,app收到干扰的时候,进行处 ...
- apache hadoop 伪分布式安装
1. 准备工作 1.1. 软件准备 1.安装VMWare 2.在VMWare上安装CentOS6.5 3.安装XShell5,用来远程登录系统 4.通过rpm -qa | grep ssh 检查cen ...
- 【译】x86程序员手册26-7.5任务切换
7.5 Task Switching 任务切换 The 80386 switches execution to another task in any of four cases: 80386在以下四 ...
- VS2015 安装包缺失(联网安装失败)问题解决
Win7 x86 测试可行 * 如果前面有尝试过安装不成功, 一定要用卸载程序删除已安装的部分,否则会出乱子. 1. 或者是用虚拟光驱加载ISO, 或者是解压到硬盘上, 都没有关系. 2. 用管理员 ...
- struts2配置文件加载顺序
struts2配置文件加载顺序: struts-default.xml/ struts-plugin.xml/ struts.xml/ struts.properties/ web.xml
- POJ_2239_Selecting Courses
题意:一周上7天课,每天12节课,学校最多开设300节不同的课,每周每种课可以只有一个上课时间或者多个上课时间(上课内容一样),问一周最多可以选多少节课. 分析:二分图最大匹配,将一周84个时间点和可 ...
- VS2010编译错误:fatal error C1189: #error : This file requires _WIN32_WINNT to be #defined at least to 0x
下面是彻底解决方法:在工程的stdafx.h中添加(如有类似语句,需注释掉)#ifndef WINVER // Allow use of features specific to Windows 95 ...
- Java基础(一)--操作符
Java底层都是使用操作符来操作Java中的数据 常见的操作符:+.-.*./.= 优先级: 当一个表达式存在多个操作符时,操作符的优先级决定了计算顺序,这点在我们刚开始学习数学的时候就会了解到 如果 ...