BZOJ_5311_贞鱼_决策单调性+带权二分
BZOJ_5311_贞鱼_决策单调性+带权二分
Description
Input
Output
Sample Input
0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0
Sample Output
编号为1,2,3的贞鱼一辆车:怨气值和为3;
编号为4,5,6的贞鱼一辆车:怨气值和为3;
编号为7,8的贞鱼一辆车:怨气值和为1。
最小怨气值总和为 3 + 3 + 1 = 7 。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
int rd() {
int x=0; char ch=nc();
while(ch<'0'||ch>'9') ch=nc();
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=nc();
return x;
}
#define N 4050
int n,K,s[N][N],f[N],g[N],C;
int Y(int j,int i) {
return f[j]+(s[j][j]+s[i][i]-s[i][j]*2)/2+C;
}
struct A {
int l,r,p;
}Q[N];
int find(const A &a,int x) {
int l=a.l,r=a.r+1;
while(l<r) {
int mid=(l+r)>>1;
if(Y(x,mid)>Y(a.p,mid)) l=mid+1;
else r=mid;
}
return l;
}
void check() {
int i;
int l=0,r=0;
f[0]=0; g[0]=0;
Q[r++]=(A){0,n,0};
for(i=1;i<=n;i++) {
while(l<r&&Q[l].r<i) l++;
f[i]=Y(Q[l].p,i); g[i]=g[Q[l].p]+1;
if(Y(i,n)<=Y(Q[r-1].p,n)) {
while(l<r&&Y(i,Q[r-1].l)<=Y(Q[r-1].p,Q[r-1].l)) r--;
if(l==r) Q[r++]=(A){i,n,i};
else {
int x=find(Q[r-1],i);
Q[r-1].r=x-1;
Q[r++]=(A){x,n,i};
}
}
}
}
int main() {
n=rd(); K=rd();
register int i,j;
for(i=1;i<=n;i++) {
for(j=1;j<=n;j++) {
s[i][j]=rd();
s[i][j]+=s[i-1][j]+s[i][j-1]-s[i-1][j-1];
}
}
int l=0,r=10000;
while(l<r) {
C=(l+r)>>1;
check();
if(g[n]>K) l=C+1;
else r=C;
}
l--;
C=l; check();
printf("%d\n",f[n]-K*l);
}
BZOJ_5311_贞鱼_决策单调性+带权二分的更多相关文章
- BZOJ_4609_[Wf2016]Branch Assignment_决策单调性+带权二分
BZOJ_4609_[Wf2016]Branch Assignment_决策单调性+带权二分 Description 要完成一个由s个子项目组成的项目,给b(b>=s)个部门分配,从而把b个部门 ...
- DP的各种优化(动态规划,决策单调性,斜率优化,带权二分,单调栈,单调队列)
前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [D ...
- BZOJ_2369_区间_决策单调性
BZOJ_2369_区间_决策单调性 Description 对于一个区间集合 {A1,A2……Ak}(K>1,Ai不等于Aj(i不等于J),定义其权值 S=|A1∪A2∪……AK|*|A1 ...
- BZOJ.5311.贞鱼(DP 决策单调)
题目链接 很容易写出\(O(n^2k)\)的DP方程.然后显然决策点是单调的,于是维护决策点就可以了.. 这个过程看代码或者别的博客吧我不写了..(其实是忘了) 这样复杂度\(O(nk\log n)\ ...
- 洛谷.4383.[八省联考2018]林克卡特树lct(树形DP 带权二分)
题目链接 \(Description\) 给定一棵边带权的树.求删掉K条边.再连上K条权为0的边后,新树的最大直径. \(n,K\leq3\times10^5\). \(Solution\) 题目可以 ...
- 洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)
洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(nee ...
- 洛谷 4383 [八省联考2018]林克卡特树lct——树形DP+带权二分
题目:https://www.luogu.org/problemnew/show/P4383 关于带权二分:https://www.cnblogs.com/flashhu/p/9480669.html ...
- 6.13校内互测 (DP 带权二分 斜率优化)
丘中有麻plant 改自这儿,by ZBQ. 还有隐藏的一页不放了.. 直接走下去的话,如果开始时间确定那么到每个点的时间确定,把time减去dis就可以去掉路程的影响了. 这样对于减去d后的t,如果 ...
- Codeforces.739E.Gosha is hunting(DP 带权二分)
题目链接 \(Description\) 有\(n\)只精灵,两种精灵球(高级和低级),每种球能捕捉到第\(i\)只精灵的概率已知.求用\(A\)个低级球和\(B\)个高级球能捕捉到精灵数的最大期望. ...
随机推荐
- HDU 4917 Permutation(拓扑排序 + 状压DP + 组合数)
题目链接 Permutation 题目大意:给出n,和m个关系,每个关系为ai必须排在bi的前面,求符合要求的n的全排列的个数. 数据规模为n <= 40,m <= 20. 直接状压DP空 ...
- 管理weblogic服务的启动和停止
2012-11-10 12:58 26036人阅读 评论(4) 收藏 举报 分类: WebLogic(10) 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 介绍 Weblog ...
- Android PullToRefresh 下拉刷新,上拉很多其它,支持ScrollView,ListView,可方便拓展GridView,WebView等
在写着东西之前.从网上找到非常多这方面的源代码,可是基本没有找到惬意的.包含在GitHub上的比較有名的Android-PullToRefresh-master.思来想去还是自己写吧.当然当中借鉴了一 ...
- BUPT复试专题—中位数(2014-2)
题目描述 给定一个长度为N的非降数列,求数列的中位数.中位数:当数列的项数N为奇数吋,处于中间位置的变最值即为中位数:当N 为偶数时,中位数则为处于中间位置的两个数的平均数. 输入 输入数据第一行 ...
- 一种排序(nyoj8)(简单排序)
一种排序 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描写叙述 如今有非常多长方形.每个长方形都有一个编号,这个编号能够反复.还知道这个长方形的宽和长,编号.长.宽都是整数 ...
- BeagleBone Black Industrial 进阶设置(性能优化以及延长板载eMMC存储寿命)
前言 原创文章,转载引用务必注明链接.水平有限,欢迎指正. 本文使用markdown写成,为获得更好的阅读体验,推荐访问我的博客原文: http://www.omoikane.cn/2016/09/1 ...
- SQL server创建和管理
数据库函数的应用 数据库的查询方法 修改和替换数据库的数据
- C#语言 数组
- sql注入攻防 以php+mysql为例
随着Web应用的高速发展和技术的不断成熟,对Web开发相关职位的需求量也越来越大,越来越多的人加入了Web开发的行列.但是由于程序员的水平参差不齐或是安全意识太低,很多程序员在编写代码时仅考虑了功能上 ...
- android 项目R文件丢失解决的方法
R文件丢失的原因有非常多,这里提供几种解决的方法: 1. 选中项目,点击 Project - Clean , 清理一下项目. 2. 选中项目,右键 选择 Android Tools - Fix P ...