Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall. 

Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements.

The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.

Input

The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle.

Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

Output

Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

Sample Input

9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200

Sample Output

1628

Hint

结果四舍五入就可以了

题意:给定N个点,求用一个多边形把这些点包括进去,且每个点到多边形的距离都大于等于L。

思路:

先不考虑L这个条件,因为两点之间,直线最短,所以对于凹进去的部分,我们肯定有最短的直线可以包含它,可以忽略,所以是求凸包。

然后考虑L,对于求出的凸多边形,对于它的顶点X,可以证明每个X附近需要增加一定的圆弧来保证顶点到圆弧的距离大于等于L,

所有X的圆弧角度之和为Pi,将凸包平移与圆弧连接成封闭图案,最终 ans=凸包+2*Pi*L。

看图就知道了--->

Graham算法求凸包:

(注意需要对N讨论,此题N>=3,所以没有讨论)。

#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
const double pi=acos(-1.0);
const double eps=1e-;
struct Cpoint
{
double x,y;
Cpoint(){}
Cpoint(double xx,double yy):x(xx),y(yy){}
Cpoint friend operator -(Cpoint a,Cpoint b){
return Cpoint(a.x-b.x, a.y-b.y);
}
double friend operator ^(Cpoint a,Cpoint b){
return a.x*b.y-b.x*a.y;
}
bool friend operator <(Cpoint a,Cpoint b){
if(a.y==b.y) return a.x<b.x;
return a.y<b.y;
}
};
double dist(Cpoint a,Cpoint b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
int Sign(double x)
{
if(x>=-eps&&x<=eps) return ;
if(x>eps) return ; return -;
}
int N,L; Cpoint P[maxn];
bool cmp(Cpoint a,Cpoint b)
{
int s=Sign((a-P[])^(b-P[]));
if(s>||(s==&&dist(a,P[])<dist(b,P[]))) return true;
return false;
}
double Graham() //如果N<3还得讨论一下。
{
double res=;
sort(P+,P+N+); //得到“原点 ”
sort(P+,P+N+,cmp); //得到积角序
int q[maxn],top=;
q[]=; q[]=; q[]=;
for(int i=;i<=N;i++){
while(top>&&Sign((P[q[top]]-P[q[top-]])^(P[i]-P[q[top]]))<=) top--;
q[++top]=i;
}
for(int i=;i<top;i++) res+=dist(P[q[i]],P[q[i+]]);
res=res+dist(P[q[top]],P[])+2.0*pi*L;
return res;
}
int main()
{
while(~scanf("%d%d",&N,&L)){
for(int i=;i<=N;i++)
scanf("%lf%lf",&P[i].x,&P[i].y);
printf("%d\n",(int)(Graham()+0.5));
}return ;
}

POJ1113:Wall (凸包:求最小的多边形,到所有点的距离大于大于L)的更多相关文章

  1. POJ1113:Wall (凸包算法学习)

    题意: 给你一个由n个点构成的多边形城堡(看成二维),按顺序给你n个点,相邻两个点相连. 让你围着这个多边形城堡建一个围墙,城堡任意一点到围墙的距离要求大于等于L,让你求这个围墙的最小周长(看成二维平 ...

  2. POJ1113 Wall —— 凸包

    题目链接:https://vjudge.net/problem/POJ-1113 Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submis ...

  3. POJ-1113 Wall 计算几何 求凸包

    题目链接:https://cn.vjudge.net/problem/POJ-1113 题意 给一些点,求一个能够包围所有点且每个点到边界的距离不下于L的周长最小图形的周长 思路 求得凸包的周长,再加 ...

  4. POJ 1113 Wall 凸包求周长

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26286   Accepted: 8760 Description ...

  5. POJ1113 Wall 凸包

    题目大意:建立围墙将城堡围起来,要求围墙至少距离城堡L,拐角处用圆弧取代,求围墙的长度. 题目思路:围墙长度=凸包周长+(2*PI*L),另外不知道为什么C++poj会RE,G++就没问题. #inc ...

  6. LightOj1203 - Guarding Bananas(凸包求多边形中的最小角)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1203 题意:给你一个点集,求凸包中最小的角:模板题,但是刚开始的时候模板带错了,错的我 ...

  7. POJ1113 Wall

    题目来源:http://poj.org/problem?id=1113题目大意: 如图所示,给定N个顶点构成的一个多边形和一个距离值L.建立一个围墙,把这个多边形完全包含在内,且围墙距离多边形任一点的 ...

  8. hdu 1348 Wall (凸包)

    Wall Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  9. (hdu step 7.1.5)Maple trees(凸包的最小半径寻找掩护轮)

    称号: Maple trees Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...

随机推荐

  1. P1536 村村通 洛谷

    https://www.luogu.org/problem/show?pid=1536 题目描述 某市调查城镇交通状况,得到现有城镇道路统计表.表中列出了每条道路直接连通的城镇.市政府“村村通工程”的 ...

  2. hdu5412CRB and Queries

    动态修改求区间K大. 整体二分是一个神奇的东西: http://www.cnblogs.com/zig-zag/archive/2013/04/18/3027707.html 入门: 一般的主席树都挂 ...

  3. 自动调整文字高度With what should I replace the deprecated sizeWithFont:contrainedToSize:lineBreakMode method?

    自动调整文字的高度: ios 2.0 ~ 7.0以下: UILabel *orgnizationLabel = [[UILabel alloc]initWithFrame:CGRectMake(0, ...

  4. Oracle版本–EBS R12.1.1

    select * from v$version; Oracle Database 11g Enterprise Edition Release 11.1.0.7.0 - 64bit Productio ...

  5. vim 精确匹配查找单词【转】

    删除文件中所有的空行:g/^\s*$/d 去掉所有的行尾空格::%s/\s\+$// 整个文件特定字符串的替换:%s/old_word/new_word/g 删除从当前行开始到最后一行的所有内容:., ...

  6. sphinx的配置和管理

    网上配置文档众多,但是对着他们的文档来做老是出问题,于是花了点时间研究了一下,写成总结,方便以后查阅.也希望学习sphinx的朋友能少走弯路.Coreseek的安装请参考:http://blog.ch ...

  7. 【转载】图说OOP基础(一)

    本文用图形化的形式描述OOP的相关知识.对OOP进行系统化的梳理,以便掌握. 涉及知识点: OOP的相关知识 OOP知识[Object-Orientation Programming 面向对象编程]总 ...

  8. Yii之路(第八)

    [URL地址美化]给域名地址做一个别名伪静态.通过设置服务器服务.做域名地址的转换工作. urlManager地址美化,通过程序的方式实现地址的美化工作 http://xxxxx.com/index. ...

  9. 安装Sublime配合quick-cocos2d-x开发

    下载地址 Sublime下载地址 安装 Package Control 在Sublime中,按Ctrl+~打开控制台,输入: Sublime Text2 import urllib2,os; pf=' ...

  10. js对象的属性问题

    ES6之前js的对象的属性只能是字符串, <html> <head> <script type="text/javascript"> var a ...