承德汉堡:\( 1+x2+x4+...=\frac{1}{1-x^2} \)

可乐:\(1+x \)

鸡腿:\( 1+x+x2=\frac{x3-1}{x-1} \)

蜜桃多:\( x+x3+x5+...=\frac{x}{1-x^2} \)

鸡块:\( 1+x4+x8+...=\frac{1}{1-x^4} \)

包子:\( 1+x+x2+x3=\frac{x^4-1}{x-1} \)

土豆片炒肉:\( 1+x \)

面包:\( 1+x3+x6+x9+...=\frac{1}{1-x3} \)

乘起来是\( \frac{x}{(1-x)^4} \)

然后根据某公式,生成函数\( \frac{1}{(1-x)n}=(1+x+x2+x3+...)n \),求m项系数就相当于组合数\( C_{n+m-1}^{n-1} \)

然后乘上x就相当于右移一位,就变成了\( C_{n+m-2}^{n-1} \),要求第n位,答案就是\( C_{n+2}^{3} \)

#include<iostream>
#include<cstdio>
#define mod 10007
using namespace std;
const int N=505;
int n;
char s[N];
int main()
{
scanf("%s",s+1);
for(int i=1;s[i];i++)
n=(n+(n<<1)+(n<<3)+(s[i]-'0'))%mod;
printf("%d\n",(n*(n+1)%mod*(n+2)%mod*1668%mod));
return 0;
}

bzoj 3028: 食物【生成函数】的更多相关文章

  1. BZOJ 3028: 食物 [生成函数 隔板法 | 广义二项式定理]

    3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 497  Solved: 331[Submit][Status][Discuss] De ...

  2. BZOJ 3028 食物 (生成函数+数学题)

    题面:BZOJ传送门 题目让我们求这些物品在合法范围内任意组合,一共组合出$n$个物品的方案数 考虑把每种食物都用生成函数表示出来,然后用多项式乘法把它们乘起来,第$n$项的系数就是方案数 汉堡:$1 ...

  3. BZOJ 3028 食物 生成函数

    Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数.他这 ...

  4. bzoj 3028 食物——生成函数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 把式子写出来,化一化,变成 x / ((1-x)^4) ,变成几个 sigma 相乘的 ...

  5. bzoj 3028 食物 —— 生成函数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3028 式子很好推,详细可以看这篇博客:https://blog.csdn.net/wu_to ...

  6. BZOJ 3028 食物 ——生成函数

    把所有东西的生成函数搞出来. 发现结果是x*(1-x)^(-4) 然后把(1-x)^(-4)求逆,得到(1+x+x^2+...)^4 然后考虑次数为n的项前的系数,就相当于选任意四个非负整数构成n的方 ...

  7. bzoj 3028: 食物 生成函数_麦克劳林展开

    不管怎么求似乎都不太好求,我们试试生成函数.这个东西好神奇.生成函数的精华是两个生成函数相乘,对应 $x^{i}$ 前的系数表示取 $i$ 个时的方案数. 有时候,我们会将函数按等比数列求和公式进行压 ...

  8. bzoj 3028: 食物 -- 母函数

    3028: 食物 Time Limit: 3 Sec  Memory Limit: 128 MB Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险! 我们暂且不讨论他 ...

  9. BZOJ 3028: 食物

    \(\color{#0066ff}{ 题目描述 }\) 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应 该带一些什么东西.理所当然的,你当然要帮 ...

随机推荐

  1. python学习之 -- 数据序列化

    json / pickle 数据序列化 序列化定义:把变量从内存中变成可存储或传输的过程称为序列化.反序列化:把变量内容从序列化的对象重新读到内存里称为反序列胡. 序列化模块之--pickle使用注意 ...

  2. Java面试题总结之OOA/D,UML,和XML

    全文字数:   2732 阅读时间:   大约9 分钟 1.UML 是什么?常用的几种UML图? 统一建模语言(Unified Modeling Language,UML)又称标准建模语言:常用图包括 ...

  3. mybatisplus代码生成器

    一.随便建一个springboot工程,在pom文件中导入依赖 <!-- 模板引擎 --> <dependency> <groupId>org.apache.vel ...

  4. google 上网

    https://chrome.google.com/webstore/detail/%E5%BC%80%E7%9C%BC/kpamljbkjaaljbcgobdealnpalcgicna?hl=zh- ...

  5. Md5扩展攻击的原理和应用

    *本文原创作者:Guilty and Innocent,本文属FreeBuf原创奖励计划,未经许可禁止转载 做CTF题目的过程中遇到了md5扩展攻击,参考了几篇文章,感觉写的都有些小缺陷,再发一篇文章 ...

  6. RAM、ROM和磁盘

     计算机存储数据的存储器主要分为RAM(随机訪问存储器).ROM.磁盘. RAM又分为SRAM和DRAM两种,SRAM用作快速缓存,DRAM用作主存. 1.SRAM SRAM又被称为静态RAM.利 ...

  7. mysql中“Table ‘’ is read only”的解决办法

    之前是在linux下面直接Copy的data下面整个数据库文件夹,在phpMyAdmin里面重新赋予新用户相应权限后,drupal成功连接上数据库.但出现N多行错误提示,都是跟Cache相关的表是‘R ...

  8. Swift开发--Storyboard的使用教程

    假设App中包含非常多不同的页面,使用Storyboard能够帮你降低实现页面间跳转的胶合代码. 过去的开发人员相应每一个视图控制器分别创建界面设计文件(即"nib"或" ...

  9. Android5.0(lollipop)新特性介绍(一)

    今年6月的Google I/O大会上.Android L的初次见面我相信让会让非常多android粉丝有些小激动和小期待.当然作为开发人员的我来说,激动不言而喻,毕竟这是自08年以来改变最大的一个版本 ...

  10. react 中的 PureComponent

    React.PureComponent最重要的一个用处就是优化React应用,因为它减少了应用中的渲染次数,所以对性能的提升是非常可观的. 原理:在普通的 componnet 组件中,shouldCo ...