HDU1452:Happy 2004(积性函数)(因子和)
题意
给出\(x\),求\(2004^x\)的所有因子和
分析
\(2004=2*2*3*167\)
则\(2004^x\)=\(2^{2x}*3^x*167^x\)
s[\(2004^x\)]=s[\(2^{2x}\)]s[\(3^x\)]s[\(167^x\)]
s[i]为积性函数
如果\(p\)为素数,则$s(p^x) = (1 + p^1 + p^2 + ... p^x) = (p^{x+1} - 1) / (p-1) $
然后求出2,3,167的逆元即可
注意开long long
代码
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <bitset>
using namespace std;
#define ll long long
#define F(i,a,b) for(int i=a;i<=b;++i)
#define R(i,a,b) for(int i=a;i<b;++i)
#define mem(a,b) memset(a,b,sizeof(a))
#define cpy(a,b) memcpy(a,b,sizeof(b))
#pragma comment(linker, "/STACK:102400000,102400000")
inline void read(int &x){x=0; char ch=getchar();while(ch<'0') ch=getchar();while(ch>='0'){x=x*10+ch-48; ch=getchar();}}
int a[4]={0,2,3,22},x;
const int mod=29;
ll work(int p,int x)
{
ll ret=1;
for(;x;x>>=1,(p*=p)%=mod) if(x&1) (ret*=p)%=mod;
return ret;
}
int main()
{
while(scanf("%d",&x),x)
{
ll ans=1;ans=ans*(work(a[1],2*x+1)-1)%mod;
F(i,2,3)
ans=ans*((work(a[i]%mod,x+1)-1)*work((a[i]-1)%mod,mod-2))%mod;
printf("%lld\n",ans);
}
return 0;
}
HDU1452:Happy 2004(积性函数)(因子和)的更多相关文章
- hdu1452 Happy 2004(规律+因子和+积性函数)
Happy 2004 题意:s为2004^x的因子和,求s%29. (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...
- HDU 1452 Happy 2004(因子和的积性函数)
题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都 ...
- HDU1452Happy 2004(高次幂取模+积性函数+逆元)
题目意思:2004^x的所有正因数的和(S)对29求余:输出结果: 原题链接 题目解析:解析参照来源:点击打开链接 因子和 6的因子是1,2,3,6; 6的因子和是s(6)=1+2+3+6=12; 2 ...
- HDU 1452 Happy 2004 (逆元+快速幂+积性函数)
G - Happy 2004 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Subm ...
- 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...
- HDU 1452 Happy 2004(因数和+费马小定理+积性函数)
Happy 2004 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- POJ 2480 Longge's problem (积性函数,欧拉函数)
题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...
- Divisor counting [线性筛积性函数]
Divisor counting 题目大意:定义f(n)表示整数n的约数个数.给出正整数n,求f(1)+f(2)+...+f(n)的值. 注释:1<=n<=1000,000 想法:我们再次 ...
- [模板] 积性函数 && 线性筛
积性函数 数论函数指的是定义在正整数集上的实或复函数. 积性函数指的是当 \((a,b)=1\) 时, 满足 \(f(a*b)=f(a)*f(b)\) 的数论函数. 完全积性函数指的是在任何情况下, ...
随机推荐
- 给你两个字符串str1,str2,找出str2在str1中的位置
如题 题目参考链接: http://blog.csdn.net/hxz_qlh/article/details/14110221 代码来自非原创 #include <iostream> # ...
- poj2723 2sat判断解+二分
典型的2-sat问题,题意:有m个门,每个门上俩把锁,开启其中一把即可,现在给n对钥匙(所有 钥匙编号0123456...2n-1),每对钥匙只能用一把,要求尽可能开门多(按顺序,前max个). 关键 ...
- 一个Tomcat最多支持多少用户的并发?
,也就是说同时支持 另外,在 Java 中每开启一个线程需要耗用 1MB 的 JVM 内存空间用于作为线程栈之用.Tomcat的最大并发数是可以配置的,实际运用中,最大并发数与硬件性能和CPU数量都有 ...
- 搭建Spring+mybatis报错
java.lang.ClassCastException: com.sun.proxy.$Proxy12 cannot be cast to com.bdqn.service.impl.UserSer ...
- Go --- 设计模式(工厂模式)
简易工厂主要是用来解决对象“创建”的问题.以下的例子取自<大话设计模式>中第一章,实现一个可扩展的“计算器”.当增加新的功能时,并不需改动原来已经实现的算法.由于是简易工厂,所以我们还是需 ...
- StringUtil内部方法差异
StringUtil 的 isBlank.isEmply.isNotEmpty.isNotBlank 区别 String.trim()方法: trim()是去掉首尾空格 append(Stri ...
- Scala入门到精通——第二十四节 高级类型 (三)
作者:摆摆少年梦 视频地址:http://blog.csdn.net/wsscy2004/article/details/38440247 本节主要内容 Type Specialization Man ...
- centos中w使用smbclient连接window出现:session setup failed: NT_STATUS_LOGON_FAILURE
1. 在window中网络->我自己的电脑->能够查看到共享文件,说明window的共享是正常了; 2. 在window中配置共享时,使用的是仅仅同意超级管理员訪问,可是我把超级管理员改名 ...
- Python中的列表,元组,字符串之间的相互转化
Python中的列表元组和字符串之间的相互转化需要利用,tuple(),list(),str(). 示例如下: >>> the_string = "hello I'am x ...
- 简单了解eMMC
以下只是个人看法,有不妥之处,请批评指出. 参考资料:http://www.veryarm.com/1200.html 一.eMMC的发展 ROM→NorFlash→NandFlash→eMMC→UF ...