题意

给出\(x\),求\(2004^x\)的所有因子和

分析

\(2004=2*2*3*167\)

则\(2004^x\)=\(2^{2x}*3^x*167^x\)

s[\(2004^x\)]=s[\(2^{2x}\)]s[\(3^x\)]s[\(167^x\)]

s[i]为积性函数

如果\(p\)为素数,则$s(p^x) = (1 + p^1 + p^2 + ... p^x) = (p^{x+1} - 1) / (p-1) $

然后求出2,3,167的逆元即可

注意开long long

代码

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <string>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#include <bitset>
using namespace std; #define ll long long
#define F(i,a,b) for(int i=a;i<=b;++i)
#define R(i,a,b) for(int i=a;i<b;++i)
#define mem(a,b) memset(a,b,sizeof(a))
#define cpy(a,b) memcpy(a,b,sizeof(b))
#pragma comment(linker, "/STACK:102400000,102400000")
inline void read(int &x){x=0; char ch=getchar();while(ch<'0') ch=getchar();while(ch>='0'){x=x*10+ch-48; ch=getchar();}} int a[4]={0,2,3,22},x;
const int mod=29;
ll work(int p,int x)
{
ll ret=1;
for(;x;x>>=1,(p*=p)%=mod) if(x&1) (ret*=p)%=mod;
return ret;
} int main()
{
while(scanf("%d",&x),x)
{
ll ans=1;ans=ans*(work(a[1],2*x+1)-1)%mod;
F(i,2,3)
ans=ans*((work(a[i]%mod,x+1)-1)*work((a[i]-1)%mod,mod-2))%mod;
printf("%lld\n",ans);
}
return 0;
}

HDU1452:Happy 2004(积性函数)(因子和)的更多相关文章

  1. hdu1452 Happy 2004(规律+因子和+积性函数)

    Happy 2004 题意:s为2004^x的因子和,求s%29.     (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...

  2. HDU 1452 Happy 2004(因子和的积性函数)

    题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都 ...

  3. HDU1452Happy 2004(高次幂取模+积性函数+逆元)

    题目意思:2004^x的所有正因数的和(S)对29求余:输出结果: 原题链接 题目解析:解析参照来源:点击打开链接 因子和 6的因子是1,2,3,6; 6的因子和是s(6)=1+2+3+6=12; 2 ...

  4. HDU 1452 Happy 2004 (逆元+快速幂+积性函数)

    G - Happy 2004 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Subm ...

  5. 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)

    Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...

  6. HDU 1452 Happy 2004(因数和+费马小定理+积性函数)

    Happy 2004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  7. POJ 2480 Longge's problem (积性函数,欧拉函数)

    题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...

  8. Divisor counting [线性筛积性函数]

    Divisor counting 题目大意:定义f(n)表示整数n的约数个数.给出正整数n,求f(1)+f(2)+...+f(n)的值. 注释:1<=n<=1000,000 想法:我们再次 ...

  9. [模板] 积性函数 && 线性筛

    积性函数 数论函数指的是定义在正整数集上的实或复函数. 积性函数指的是当 \((a,b)=1\) 时, 满足 \(f(a*b)=f(a)*f(b)\) 的数论函数. 完全积性函数指的是在任何情况下, ...

随机推荐

  1. msp430项目编程30

    msp430中项目---电压检测系统 1.SVS工作原理 2.电路工作原理 3.代码(显示部分) 4.代码(功能实现) 5.项目总结

  2. hdu 1429 bfs+二进制状态压缩

    开始时候只用了BFS,显然超时啊,必然在结构体里加一个数组什么的判重啊,开始用的一个BOOL数组,显然还是不行,复杂度高,每次都要遍历数组来判重:后百度之,学习了二进制状态压缩,其实就用一个二进制数来 ...

  3. C. The Two Routes---cf602C(Dij)

    http://codeforces.com/problemset/problem/602/C 题目大意:  有n个城市 有m条铁路  如果两个城市没有铁路  那么一定有公路 求从1 到 n 用铁路和公 ...

  4. codeforces 873E(枚举+rmq)

    题意 有n(n<=3000)个人参与acm比赛,每个人都有一个解题数,现在要决定拿金牌的人数cnt1,拿银牌的人数cnt2,拿铜牌的人数cnt3,各自对应一个解题数区间[d1,c1],[d2,c ...

  5. java IO与NIO

    场景:IO适用于大而少,NIO适用于小而多 转载:https://www.cnblogs.com/kzfy/p/5063467.html 传统的socket IO中,需要为每个连接创建一个线程,当并发 ...

  6. google --SwitchyOmega and switchysharp ***

    https://github.com/FelisCatus https://chrome.google.com/webstore/search/Proxy%20SwitchySharp%20?hl=z ...

  7. js的基础(平民理解的执行上下文/调用堆栈/内存栈/值类型/引用类型)

    与以前的切图比较,现在的前端开发对js的要求似乎越来越高,在开发中,我们不仅仅是要知道如何运用现有的框架(react/vue/ng), 而且我们对一些基础的知识的依赖越来越大. 现在我们就用平民的方法 ...

  8. [Rust] Setup Rust for WebAssembly

    In order to setup a project we need to install the nightly build of Rust and add the WebAssembly tar ...

  9. Android - 隐藏EditText弹出的软键盘输入(SoftInput)

    隐藏EditText弹出的软键盘输入(SoftInput) 本文地址: http://blog.csdn.net/caroline_wendy 保持界面的整洁, 能够选择在进入界面时, 隐藏EditT ...

  10. C++实现KMP模式匹配算法

    #include<iostream> #include<string> #include<vector> using namespace std; void Nex ...