Problem Description

A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。

Input

数据的第一行是一个T,表示有T组数据。每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。

Output

对应每组数据,输出Tr(A^k)%9973。

Sample Input

2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9

Sample Output

2
2686
解题思路:简单的矩阵快速幂。矩阵快速幂中初始化的矩阵就等同于普通快速幂初始化的1,这就是单位矩阵B,性质:B*A=A,即一开始若二进制最低位为1时,要先与初始的矩阵a相乘可得到a原矩阵,这和普通快速幂是一样的,就是1*a=a。单位矩阵就是主对角线都是1,其他全是0,以后当循环到二进制的最低位为1,矩阵b就和此时的矩阵('a')相乘即可。
AC代码:
 #include<bits/stdc++.h>
using namespace std;
const int mod=;
const int maxn=;
struct Matrix{int m[maxn][maxn];}init;
int t,n,k;
Matrix mul(Matrix a,Matrix b){
Matrix c;
for(int i=;i<n;i++){//枚举第一个矩阵的行。
for(int j=;j<n;j++){//枚举第二个矩阵的列。
c.m[i][j]=;
for(int k=;k<n;k++)//枚举第一个矩阵的列数
c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j])%mod;
}
}
return c;
}
Matrix POW(Matrix a,int x){//矩阵快速幂模仿一般快速幂,x为幂指数
Matrix b;memset(b.m,,sizeof(b.m));//先初始化为0,再构造单位矩阵
for(int i=;i<n;++i)b.m[i][i]=;
while(x){
if(x&)b=mul(b,a);//如果x的二进制最低位为1,则乘上A^(2^i)
a=mul(a,a);//将矩阵a平方
x>>=;
}
return b;
}
int main(){
while(cin>>t){
while(t--){
cin>>n>>k;
for(int i=;i<n;++i)
for(int j=;j<n;++j)
cin>>init.m[i][j];
Matrix res=POW(init,k);//矩阵快速幂取模运算
int ans=;
for(int i=;i<n;++i)//主对角线上各项的和
ans=(ans+res.m[i][i])%mod;
cout<<ans<<endl;
}
}
return ;
}

题解报告:hdu 1575 Tr A的更多相关文章

  1. HDU.1575 Tr A ( 矩阵快速幂)

    HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...

  2. hdu 1575 Tr A

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1575 Tr A Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和), ...

  3. HDU 1575 Tr A 【矩阵经典2 矩阵快速幂入门】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1575 Tr A Time Limit: 1000/1000 MS (Java/Others)    Me ...

  4. HDU 1575 Tr A(矩阵高速幂)

    题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...

  5. hdu 1575 Tr A(矩阵快速幂乘法优化算法)

    Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%. Input 数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n ...

  6. HDU 1575 Tr A----矩阵相乘题。

    Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  7. hdu 1575 Tr A (二分矩阵)

    Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  8. hdu 1575 Tr A(矩阵高速电源输入)

    Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  9. hdu 1575 Tr A(矩阵快速幂)

    今天做的第二道矩阵快速幂题,因为是初次接触,各种奇葩错误整整调试了一下午.废话不说,入正题.该题应该属于矩阵快速幂的裸题了吧,知道快速幂原理(二进制迭代法,非递归版)后,剩下的只是处理矩阵乘法的功夫了 ...

随机推荐

  1. Turtle-可视化界面画圣诞树

    圣诞节(Christmas)又称耶诞节.耶稣诞辰,译名为“基督弥撒”,是西方传统节日,起源于基督教,在每年公历12月25日.弥撒是教会的一种礼拜仪式.圣诞节是一个宗教节,因为把它当作耶稣的诞辰来庆祝, ...

  2. MySQL Connector/Python 接口 (一)

    这里仅介绍 MySQL 官方开发的 Python 接口,参见这里: https://dev.mysql.com/doc/connector-python/en/ Chapter 1 Introduct ...

  3. 百练4103:踩方格(DFS)

    描述 有一个方格矩阵,矩阵边界在无穷远处.我们做如下假设:a.    每走一步时,只能从当前方格移动一格,走到某个相邻的方格上:b.    走过的格子立即塌陷无法再走第二次:c.    只能向北.东. ...

  4. Java Web学习总结(31)——全站HTTPS化SSL免费证书使用

    1 背景 谷歌从 2017 年起,Chrome 浏览器将也会把采用 HTTP 协议的网站标记为「不安全」网站:苹果从 2017 年 iOS App 将强制使用 HTTPS:在国内热火朝天的小程序也要求 ...

  5. [luoguP1879] [USACO06NOV]玉米田Corn Fields(DP)

    传送门 说要统计方案,感觉就是个 Σ 而矩阵中只有 01 ,可以用二进制表示 这样,预处理出每一个每一行所有可能的状态 s 然后初始化第一行所有状态的方案数为 1 f[i][j] = Σf[i - 1 ...

  6. 通过JQUERY获取SELECT OPTION中选中的值

    遇到一样学一样. 一个是取KEY,一个是取VALUE,一个是取所有文本. var dbuser_select = $("#dbuser_select option:selected" ...

  7. HDU 1546 Idiomatic Phrases Game 求助!help!!!

    Idiomatic Phrases Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/O ...

  8. 【python】字符遍历

    Python为我们提供了很多便捷的方式去遍历一个字符串中的字符.比如,将一个字符串转换为一个字符数组(列表): theList = list(theString) 同时,我们可以方便的通过for语句进 ...

  9. 解决多个Xcode导致的N个模拟器的问题

    <欢迎大家增加iOS开发学习交流群:QQ529560119> 完美解决多个Xcode从而导致了出现N个模拟器的问题

  10. 从打击App刷榜看苹果的底线

    这两天苹果打击App刷榜者的消息刷屏了,从腾讯科技.appying多个媒体渠道看到,<安居客>.<友秘>.<微在>.<秦时明月2>.<悟空与貂蝉& ...