题目描述

在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件:

1 .路径上的所有点的出边所指向的点都直接或间接与终点连通。

2 .在满足条件1 的情况下使路径最短。

注意:图G 中可能存在重边和自环,题目保证终点没有出边。

请你输出符合条件的路径的长度。

输入输出格式

输入格式:

输入文件名为road .in。

第一行有两个用一个空格隔开的整数n 和m ,表示图有n 个点和m 条边。

接下来的m 行每行2 个整数x 、y ,之间用一个空格隔开,表示有一条边从点x 指向点y 。

最后一行有两个用一个空格隔开的整数s 、t ,表示起点为s ,终点为t 。

输出格式:

输出文件名为road .out 。

输出只有一行,包含一个整数,表示满足题目᧿述的最短路径的长度。如果这样的路径不存在,输出- 1 。

输入输出样例

输入样例#1:

3 2
1 2
2 1
1 3
输出样例#1:

-1
输入样例#2:

6 6
1 2
1 3
2 6
2 5
4 5
3 4
1 5
输出样例#2:

3

说明

解释1:

如上图所示,箭头表示有向道路,圆点表示城市。起点1 与终点3 不连通,所以满足题

目᧿述的路径不存在,故输出- 1 。

解释2:

如上图所示,满足条件的路径为1 - >3- >4- >5。注意点2 不能在答案路径中,因为点2连了一条边到点6 ,而点6 不与终点5 连通。

对于30%的数据,0<n≤10,0<m≤20;

对于60%的数据,0<n≤100,0<m≤2000;

对于100%的数据,0<n≤10,000,0<m≤200,000,0<x,y,s,t≤n,x≠t。

这道题我们可以用逆向思维来想

如果一个点能到达终点,那么终点也一定能到达这个点

这样就简单了

从终点跑一遍BFS,算出每一个点的访问次数

然后把不能走的点删去

最后spfa带走

一个很有意思的能够找出访问次数而且不会死循环的方法

int to=edge[i].v;

if(cs[to]++)continue;
q.push(to); 
 
完整代码
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#define INF 0x7ffffff
using namespace std;
int read(int & n)
{
int flag=,x=;char c='/';
while(c<''||c>''){c=getchar();if(c=='-')flag=;}
while(c>=''&&c<='')x=x*+(c-),c=getchar();
if(flag)n=-x;else n=x;
}
const int MAXN=;
int n,m,bgx,bgy;
int rudu[MAXN];
struct node
{
int u,v,w,nxt;
}edge[MAXN];
int num=;
int head[MAXN];
int flag[MAXN];// 记录每个值是否能够到达终点
int cs[MAXN];
int dis[MAXN];
int vis[MAXN];
void add_edge(int ll,int rr,int ww)
{
edge[num].u=ll;
edge[num].v=rr;
edge[num].w=ww;
edge[num].nxt=head[ll];
head[ll]=num++;
}
void bfs()
{
queue<int>q;
int tot=;
q.push(bgx),tot++;
while(q.size()!=)
{
int p=q.front();
q.pop();
for(int i=head[p];i!=-;i=edge[i].nxt)
{
int to=edge[i].v;
if(cs[to]++)continue;
q.push(to);
}
}
//rudu[bgy]=0;
for(int i=;i<=n;i++)
if(rudu[i]!=cs[i]&&i!=bgy)
flag[i]=;
}
void dele()
{
for(int i=;i<=num;i++)
{
if(flag[edge[i].u]!=)
{
edge[i].u=-;
edge[i].v=-;
edge[i].w=-;
edge[i].nxt=-;
}
}
}
void spfa()
{
queue<int>q;
q.push(bgx);
dis[bgx]=;
while(q.size()!=)
{
int p=q.front();
q.pop();
vis[p]=;
for(int i=head[p];i!=-;i=edge[i].nxt)
{
if(edge[i].u==-)continue;
int to=edge[i].v;
if(dis[to]>dis[p]+edge[i].w)
{
dis[to]=dis[p]+edge[i].w;
if(vis[to]==)
{
vis[to]=;
q.push(to);
}
}
}
}
if(dis[bgy]==INF)
printf("-1");
else
printf("%d",dis[bgy]);
}
int main()
{
freopen("roadb.in","r",stdin);
freopen("roadb.out","w",stdout);
read(n);read(m);
for(int i=;i<=n;i++)head[i]=-,dis[i]=INF;
for(int i=;i<=m;i++)
{
int x,y;
read(x);read(y);
add_edge(y,x,);
rudu[x]++;
}
read(bgy);read(bgx);
bfs();
dele();
spfa();
return ;
}
 

1807. [NOIP2014]寻找道路P2296 寻找道路的更多相关文章

  1. 洛谷P2296 寻找道路==codevs3731 寻找道路

    P2296 寻找道路 题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点 ...

  2. 洛谷——P2296 寻找道路

    P2296 寻找道路 题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点 ...

  3. [NOIP2014] 提高组 洛谷P2296 寻找道路

    题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

  4. NOIP2014 day2 T2 洛谷P2296 寻找道路

    题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

  5. [NOIp2014] luogu P2296 寻找道路

    不知道是因为我菜还是别的,最近老是看错题. 题目描述 在有向图 GGG 中,每条边的长度均为 1,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 路径上的所有点的出边所指向 ...

  6. 洛谷P2296 寻找道路 [拓扑排序,最短路]

    题目传送门 寻找道路 题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点 ...

  7. luogu P2296 寻找道路

    题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条 ...

  8. 洛谷 [P2296] 寻找道路

    反向BFS预处理,求出所有符合题意的点,再正向BFS,(注意对于边权恒为一的点,BFS,比SPFA高效) 输入时n与m分清 #include <iostream> #include < ...

  9. 【luogu P2296 寻找道路】 题解

    题目链接:https://www.luogu.org/problemnew/show/P2296 题意:给定起点终点,找一条从起点到终点的最短路径使路上的每个点都能有路径到达终点. 我们先反着建一遍图 ...

随机推荐

  1. omnidazzle是mac的画笔工具

    先使用命令 brew cask install omnidazzle 试试,不行参考下面: http://macappstore.org/omnidazzle/

  2. NA远程

    远程网络按照L1分类:     租用专线(Leased Line):一般采用同步串行链路,使用HDLC/PPP封装:     线路交换(Circuit-Switched):一般采用异步串行链路,使用H ...

  3. JSON参数

    JSON(JavaScript Object Notation,JavaScript 对象表示法),多么简单,不就是键值对嘛. 可是每次在前后端之间通过json作为参数传递,我都心烦意乱,甚至吓到面无 ...

  4. eclipse android开发,文本编辑xml文件,给控件添加ID后,R.java,不自动的问题。

    直接编辑xml文件给控件添加id,不自动更新.原来的id写法:@id/et_tel 然后改写成这样:@+id/et_tel  然后就好了!操`1

  5. fatal error LNK1123: failure during conversion to COFF: file invalid or corrupt

    project->xx Properties->Manifest->Input and Output->Embed Manifest将yes修改为no

  6. bzoj2763 [JLOI2011]飞行路线——分层图

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2763 构建分层图. 代码如下: 写法1(空间略大)(时间很慢): #include<i ...

  7. gitlab调试

    Bundle complete! 104 Gemfile dependencies, 161 gems now installed.Gems in the groups development, te ...

  8. Enum类的非一般用法汇总(工作中遇到时持续更新)

    1.  每个枚举实例定义一套自己的方法示例: 1 @AllArgsConstructor 2 public enum BroadcastTypeEnum { 3 ALL(0, "全站&quo ...

  9. matlab绘制曲线对比图

    >> clear;>> x1=[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8];>> y1=[0,0.55,0.69,0.86,0.93,0. ...

  10. fck 属性配置大全

    优化FCKeditor文件夹和文件: 下载FCKeditor并解压之后,会产生_samples和 editor两个文件夹和几个文件,全部删除以_开头的文件夹和文件,因为这些都是FCKeditor的一些 ...