数的计数(noip2001,动态规划递推)
题目链接:
普通版:
https://www.luogu.org/problemnew/show/P1028
数据加强版:
https://www.luogu.org/problemnew/show/P2240
中间插一段,奇怪了,我明明想到的是最好的那种递推方法,结果写着写着忘记了,写成最差的递推方法
所以中间插一段被我遗忘的好方法
这个也是这题的书上的答案
#include<bits/stdc++.h>
using namespace std;
int a[];
int main()
{
int n;
cin>>n;
a[]=;
for(int i=;i<=n;i++)
{
a[i]=a[i-];
if(i%==)
a[i]=a[i-]+a[i/];
}
cout<<a[i];
return ;
}
稍微解释一下:
举个例子就好了
a[5]=a[4]
a[6]=a[5]+a[6/3],那个a[6/3]就是a[3],因为相对于a[4]来说a[6]多了个a[3]的全部子数字
因为a[4]只能分解1~2
a[5]同a[4]一样
而a[6]可以分解1~3
所以a[6]多个a[3]
以下为自己写的垃圾方法:
基本思路:
@1:基本递推:
第n个数,它产生n/2个新的数,由于1~n/2都小于n,所以可以用递推,都计算到n了那么1~n/2的值肯定都已知了
@2:边缘条件:
我们把n=1和n=0时结果都为1都一开始就初始化好,作为初始条件
@3:细节
ps:这个地方好像有更好的办法而不是用奇葩的+1法,可是我懒得想了
在具体的数组中,a[n]应该是不包括n本身的所有子数字数目,为什么不能包括本身呢,因为后面要通过前面的数据递推
比如说a[6]=6/2 +a[1] + a[2] +a[3],那么其实是a[6]= 1+a[1] + 1+a[2] + 1+a[3],所以最后都要加回来
@4:规律
这个结果有奇偶的规律,比如说n=3与n=2结果相同,n=19与n=18结果相同,也就是只要计算一半就好了
AC代码(普通版和数据加强版都适用)
#include<bits/stdc++.h>
using namespace std;
int a[];
int main()
{
std::ios::sync_with_stdio(false);
int n;cin>>n;
if(n<=)
{
cout<<+<<endl;
return ;
}
else
{
for(int i=;i<=n+;i++)
{
if(i%==)
{
a[i]=i/;
for(int j=;j<=i/;j++)
a[i]+=a[j];
}
else
a[i]=a[i-];
}
}
if(n%==)
cout<<a[n]+<<endl;
else
cout<<a[n/*]+<<endl;
}
数的计数(noip2001,动态规划递推)的更多相关文章
- 数塔(hdoj 2084,动态规划递推)
在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的: 有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少? 已经告诉你了,这是个DP的题目 ...
- 最长上升子序列(动态规划递推,LIS)
1759:最长上升子序列 题目: 总时间限制: 2000ms 内存限制: 65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的 ...
- 最大子段和(洛谷P1115,动态规划递推)
洛谷题目链接 题目赋值出来格式有问题,所以我就只放题目链接了 下面为ac代码 #include<bits/stdc++.h> #define ll long long using name ...
- NOIP2000方格取数(洛谷,动态规划递推)
先上题目: P1004 方格取数 下面上ac代码: ///如果先走第一个再走第二个不可控因素太多 #include<bits/stdc++.h> #define ll long long ...
- 【洛谷】P1176: 路径计数2【递推】
P1176 路径计数2 题目描述 一个N×N的网格,你一开始在(1,1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N,N),即右下角有多少种方法. 但是这个问题太简单了,所以 ...
- P1541 乌龟棋 题解(洛谷,动态规划递推)
题目:P1541 乌龟棋 感谢大神的题解(他的写的特别好) 写一下我对他的代码的理解吧(哎,蒟蒻就这能这样...) 代码: #include<bits/stdc++.h> #define ...
- Coin Toss(uva 10328,动态规划递推,限制条件,至少转至多,高精度)
有n张牌,求出至少有k张牌连续是正面的排列的种数.(1=<k<=n<=100) Toss is an important part of any event. When everyt ...
- 一只小蜜蜂(hdoj 2044,动态规划递推)
Problem Description 有一只经过训练的蜜蜂只能爬向右侧相邻的蜂房,不能反向爬行.请编程计算蜜蜂从蜂房a爬到蜂房b的可能路线数.其中,蜂房的结构如下所示. Input 输入数据的第一行 ...
- P1759 通天之潜水(不详细,勿看)(动态规划递推,组合背包,洛谷)
题目链接:点击进入 题目分析: 简单的组合背包模板题,但是递推的同时要刷新这种情况使用了哪些物品 ac代码: #include<bits/stdc++.h> using namespace ...
随机推荐
- linux 问题一 apt-get install 被 lock
问题: sudo apt-get install vim E: Could not get lock /var/lib/dpkg/lock - open (11: Resource temporari ...
- redis优势
redis是高性能的key-value内存数据库. 由于是内存型的,所以性能相比磁盘数据库更加优秀. 由于支持丰富的数据类型,相比memcache更受开发者欢迎.列表和整形是最常用的数据类型. 就算对 ...
- redis查数据
1 连接服务 [root@redis1-20 ~]# telnet 127.0.0.1 6380 Trying 127.0.0.1... Connected to 127.0.0.1. Escape ...
- 宏 函数 内联函数inline
带参宏有时候可以代替函数作用:优点直接替代,省去函数调用过程的开销:但缺点也是很明显:容易出错,系统不做检查非常容易出错. 改进方案:内联函数:既有带参宏的直接替代(拷贝)的优点,又有系统检查的优点. ...
- mysql数据误删除(drop)的恢复. (ext3grep, extundelete)
drop table tbl_name 物理删除.没有备份,没有二进制日志 在系统删除文件并非在存储中抹去数据,而仅仅是标识对应的block块可以被重新的分配使用.所以数据的恢复还是有希望的.但是那些 ...
- Suricata的Reputation
见官网 https://suricata.readthedocs.io/en/latest/reputation/index.html Docs » 9. Reputation Edit on Git ...
- Codeforces Round #243 (Div. 1)
---恢复内容开始--- A 枚举l,r #include <iostream> #include<cstdio> #include<cstring> #inclu ...
- spring boot druid mybatis多数据源
一.关闭数据源自动配置(很关键) @SpringBootApplication(exclude = { DataSourceAutoConfiguration.class }) 如果不关闭会报异常:o ...
- 苹果手机通过Safari浏览器访问web方式安装In-House应用
需求背景 公司内部员工使用的iOS客户端应用希望对内开放,不需要发布于AppStore直接能够让内部用户获取,对于Android应用来说这个问题很好解决,直接下发安装包然后就能安装了:但是对于苹果生态 ...
- (5)《Head First HTML与CSS》学习笔记---布局与定位
层叠与CSS的权重判断 1.要理解层叠,除了前面的内容外还差最后一个知识点.你已经知道如何使用多个样式表来更好地组织你的样式,或者支持不同类型的设备.不过实际上用户访问你的页面时还有另外一些样式表. ...