题目:

题目背景

NOIP2013 提高组 Day1 试题

题目描述

涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度。现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为:

aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAAgAIUDAREAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+4L9pX9pn4F/se/BnxV+0H+0h46j+G/wi8EyaNH4s8bT+HvF3iOz0P+3tbsfD+kzX2neDdB8Q6yttdavqNlYteJpr2ltLcRPeTwwky1xYvMcFgKmAp4ut7GWZY2OXYNunWlCpjZ4bFYqnRnUhTlTw/tKWDrKnUxEqdKpX9jhIVJYvEYWjU68JgMXj/rSwdGVd4PCV8diIQlD2kMJhuR4mvGnKSnVjh4S9vXjRjOdLDQr4qpFYajiK0fjTTv8Agsr/AME7NY8NWXjLSPir8V9U8Jajo8HiHT/FWnfsb/tuXvhq+8PXNmuoW2vWWuW37Okum3Wj3Fiy30GqQXT2Mtmy3Udw8BEp7sYnlzxKzFPAvB+0+uLGJ4Z4X2V/a/WVXcPYey5X7T2vLyWfO1Z348O1jHSWEaxTrTVOisP++dWfO6ahSVJz9pNzXIoxvLnvHWSd9S//AOCuf7CDfsoeGf23fBvxO8QfE/8AZq8S/Fvw98FI/id8Pfhx471KDSPHPiLxfZ+BtPj1zwzrGi6F4ttdLXxTqGnaJcajbaFdgXt9ZLbwzxy+abxFGvhMz4NynEYfEQxPHlSvQ4U9lQq4tZriaLzqKwlClgY4rEvF4mXD2dQwmFWHdfE1sBWw1GEsTVwVKrzUsbhK+B4xx9DE0Z0+BKLrcT051IYapl8I4PKsdNyljJYehNUsJnOV4mvUVdUaFDFxrV6sKVDGzp+5/s0/ts/BX9qnxp8cfhp4C0/4n+EPiR+z3q3g7T/ih8OvjF8LfGPwt8baPpnxB0O68Q/DzxZBoPi2ws7q78M+N9Isb280W8Ajv4WtLuy1zTNN1KJrQ3Qw9TEZNRzulKjPCyzfNeH8VThiMPVxWXZ7k9DLMVmGV5hSoVqqpV4YPN8sx2Hr051cDjcHjKOIwGMrwjX5dq9WOHzKGWVYV41MRlOFz7LsRPC4mjg81ybFY3MMuhmGW1sRSpPEUqOPyzG4HGU5QhicHi6To4qhTlKnzfXVYGgUAeM+EP2hvgp8Qfit8Qvgp4D+IOk+MviJ8Kbezk+J+ieF4NU1zT/h/fXxtzZeGvGnirTLC68KeGvG11bXNvqcPw/1bW7bxy2hyp4g/wCEdOhk6iXhF9ewGJzTCfvcvw2P/suWNTUMNXzCP1pYjDYCrUcY5nPL6mDq0M3llzxNPKMW8Pg83nhcXicHQqmJ/wBixeGwGK/dY3F4H+0qWElriY5e3RVDGYmjFSqYPD41Vozy2rjI0Y5lSjiK2WyxFLD4upD2akAUAFABQAUAfPHxV/au+AHwP+K3wP8Agp8U/HF34V+In7RfiC78J/BTRZfBHxD1PT/Hniixtpr2+8P6f4r0TwnqfhTT9WsrCCXVLyw1vXLC5ttIR9XuI00wG7pYFxzLOJ5DgpRq5tDJ8zz/AOpSkqNSpk2T4atis2x+HniHSpYmnltGipY2GHqVK2HlXwFKrTjWx2XwqmNtl2T/ANvY1qjlKzbK8injbqpTpZxnOKpYPJsDXhSc6uHq5tiZujlzr04U8ZOjjvq06iwWYSp/Q9MDxqz/AGhfgre/G7Vv2cP+FgaTYfGzSvDsHjBfhrrkGqeHvEmv+EJYrV5/FfgWHX7DTbf4jeG9Ilu7aw8Sa94Dn17SfDGszRaF4nvNO1tvsBeDX9oUczrYL/aI5NWoUM2hTaeIy54mywdbG4VtYjDYPHSvTwGYVaUcBjq0K9DB4mtXo4iETFf7DLLI4u1FZvTrzyupJr2GNnhp4iGJwtDERvRlmGHjhqmIxGWOosyo4F0cwq4WOAr4fEz4/wCOXxn+L3w88UeBvBPwe/Zi8a/HTWfGOj+Ndev/ABRF4v8AB/w9+EfgKy8HpoYTTfHfjvX7jUtWs/E3jW41uK18B6D4e8Ga/wD2o2n+Ib7XNQ0PR9LuNTbiniasZZrL6tJYfKMqpZpVrVatOk8xlVxWIw8cqySEm4YvNaUMNUxmKhjauX5bhsJLDyr5pGtWpUZbqnRVHC1J1/3mLzKnltOhSpTrTw0ZYXE4meaZi04/VsqpfV44aVagsVjp4yvQoYfLqydWpHN/Yo/ax8FftyfsxfDX9p3wD4Z8VeDdB+ICeKLSTwl41i0lfEnhzxD4K8a+IvAPi3Rb640LVNY0XU4tP8S+GNWt9P1nR9SutN1fTVtNUtZES4MC+1jMJTw9PKsVhsVHGYHPOHuG+KMqxUaNfDzrZPxPkWX5/lM8RhcTCFbCYr6jmFCOLw01KNLEKrGjXxGHVLFz5P8AaaOPz7KcfhXg8z4b4gzzhjN8Mq9DFUqWa5FmWJyzHfVsXh5zo4vCzrYZ1MPXg4zdKcY4ijRxUK+Gj7R8Vfhb8P8A43/DHx/8HPir4Z07xj8Ovib4T1/wP448LatD52na74Y8RabdaXq+nXK53oLi0upRFcQslzbTeVc2ssdzHHMPns5yjCZ7leMyrG+1VHFQhatQm6WLwmJo1Y4jBZhga6UpYbH5di6VDHZfiofvcLjaFDE0pKpBM9LLMxxWUZhhcywUoLEYWqqkI1qUK2HrRtOFXDYrD1VKlisJiqU6mHxmErRnQxOFqVsNXhOjVqwf84H/AAR2+JXxR/4J0ftffFv/AIIJ/tM6zr/ifw94O0vxB8cf+Ca3xi11Jbk/Ej9l6/1G/wBS1b4XajqCxpGPEPwvmXUGhtyiwwPYeOdHs0s/DGleBLe5+myLM8Vx3whj3nEaH+vXhph8vybjSnRo1aVDOuFHWwmUcMcX4enVlVprDy+tZblEqUK9SFLC4rKMjpvF5rkPF2PfhZ5l2E4R4nwWKyeM4cFeJGKx+P4fopSkuHuMKVHE5jxDwxUqqc3N1qeGxeZurUjTrVK0FxDj3GrxZluCp/Xv7Wn/AATTsvBX7Euofs4/scXnwr8GWHir9vv4Y/te6xH+0V8V9U+HXgLR9Yb9qfwp8ffFHgnwXrHgv4MeO57ePxH4i0O18F/D3wpc6DjTYNXjaTxDqE9ha6Vd+Jk8J5Zn/wBHrD0vZzyPwhzujTy7CKcp53mGUYfAce/VcpwVJxVLH5hRlxdjKlKpOrh2suy6hSqwr13iccbZ5hKObZJ47VqtWpQzfxV4czGGZ4+cefLMJnGKyThXh/F57j6k63tsNhquE4doZhmEuau62c4vFzpyw2FrUqFL6f8A2f8A9mP4+/Dv/gpB+3f+1X43tfhFD8JP2mPhv+yx4R8AW3hT4h+Ntc+Jemav8B9B8eaXq83jTwvq3wa8K+G9PsPEMvjy7fTLjRfHeu3VrBpFoLuxZ9UmWx6MjjHLeHeKMqxM5SxWbeJOZcY4F0YKeHWV4zhDhDhOnQxdSpUpVKGOjT4MweZTpUaGIw/tM2xmAWMccso4/Hd+eYiea4/gXF0qcacOHOAMXwrmUalWTnPMsVxnnXFkquAUaTVfA0pZ3Wy+NXESwuIqRwtPGvCQeKng6P6RUGJ+en/BWH9qDxN+xh/wTY/bG/aW8ETLbeOfhx8HdePw+vXhjnj074g+Kbm18E+B9Xkt5QY7iLRvE3iLS9Ult5QY5o7Z4XV1cg/M8VwzHF5bgsjymtVw+YcVcRcKcH0MVQrSw+KwlLijiXLsjx+OweIipSoY3AZbjsZjcFWSl7PF0aE2ny6/VcF4LDYvPo1cZRoYrC5PlfEPEuIweJ5/quPp8L8PZvxEstxPI1NUMzlliwFdwkpxp4hyjJSVyf8AZ88H/Bn/AIJk/wDBODw5N4s1E6R4F/Z++BF/8WPjj47uEkv/ABF4x8W2nhe58e/Gf4o+JLuSRr/xP428f+KDr/iPU7y7uJtS1fWtSS2WZibZB9n4k57k+QYjO62WYF4bhvhqdPhrg7h/Aww9F0cmwGLWRcI8N5ZRlLD4aOMxsvqOCpucqUcZnGMq4zG1XicTicS/gfDnA5txTg8kxWYYinU4k41dDiTiXNMbXqOi86z2lHM84zDHYucalWGW5TCpOnSnPnjl2Q4DDYSjGOFwlKkvzK+MP/BSP/gpp4M/Ze/ZM/a90bwB+yb4S0/9uH9of9n74M/Ar9lLxx8PvjL4k+LXhDwn+0ZqF8vw38afET42aH8f/CnhvXvGFn4bgtfGvjP4Z6D8G9H07Q7CfUNCj+JV3eaVPqtx1UMlxeV+IfA/h7xKlisxzfN62G46qZFGdKlwZg8hyvGcS8bUsLLGQxU88fDmVZTmGQ1c7q0ctwsuIa2EzGjlGIyyjHB4zeWY4bM+CPEXjjh2FVZfwnw5jM54Wo5pUw0sTxtUeeZbwzkNRRwtWFDI4cRZhm+FzfLsBSxWc4ieS044WeOhjsbPEYP+iK417Q7DVdI0DUNb0i013XYr+XRNGuNRs7bVdaj0qKKbVptI02e4F5qEWmRT281+1pHMtlFNE906LJG7eTFe0nWhSTm6FFYmtCPvzo4aVeOHjXrKKvToyrTpUFVmo03XnGkpOpKKl1rmhSpzrOK56kMOqiThSqYqVGvW9jT5pSvUnSw9atCjzyqexpV5+9CnUmeTftD/ALSHwV/ZQ+GGo/GT4++MZfA/w80rU9H0e/8AEEPhbxp4tkh1LXLs2WlW40TwN4e8S6/MLq5HlmeDS5Le3GZLuaKIGQ8eIx2EwlbAYfEVeSrmWKngsDD2dWftsVTwONzCdNypwnGlbCZfiq3tK0oUm6apKbr1KMJ9eHweJxVPG1qFPnp5fho4zFy56cPZYaWLwuCjUUZ1Iyq3xOLw9PkpKdRKbqOHsoVah+fX/D+D/gk9/wBHR6j/AOI7ftWf/OPrrOY/Qv8AZ9/aI+Df7VPwt0f4z/AbxdL42+HWu3usafpXiGbwx4x8JyXV5oepT6VqsR0Pxv4f8N6/bi1vreWES3WlxQ3AUT2kk1uyTN1YnBYnCRws8RTUI43CxxmGftKU/aYadavQjUtTqTdNurhqsfZ1OWqlHncFCUZS5cPjcNi6mNo4er7Spl2KjgsZH2dWHssTLCYXGqmpVIRjVvhsXh6ntKTnTTm6bqe2hVgfiR+3T4w+KnxX/wCC43/BP/4B/AnwjoPi3x3+zP8AsrftLftQrqPjqXUR8I/hx4p+MOq6F8A/B/xE+KUGiXNv4g1ey8M+HLD4g/8ACN+D/DVzZa/4t8Va14f0Ia/4Z8P3XiDx9pPm8Iwx+Jz/AMW86wqwFHDZJwRwlwJhc8x2HxGKWUZvxXxLU4s4jwOCw2HxOFeMzXOcl4W4YwVHA1MZgqaybGZ3nVTF1YZS8rxXqcSToYbhLgPK61apiI8SeI+Nz/MeH8PKFHF5ngOBOF8Zh8gxssXVoYmnluWYLP8Ai3E47E5lUwuKisZlWEyqjh5Zlj8CpfZX/BMj9vD4lftSfCL9p+7/AGq7P4QeBPiZ+yV+2R8a/wBj/wCIfjD4bS694W+DHjfVfhrrHhy10bxr4T074g+LPFGt+FYPEUfifTtLfw7rPi7W7uPXopI4dRL3kGmQ+rRp4XMOFfDriTBU8VQrcb5D9cnlVepDE1KGdUM/znIsRgssxFLD4aWZ4TFVMrjiMvqLC068/bVMNyVnQ+s1POxVPGZZxNxXkGOq4XEUsjp5RmuEzDC06tGEsgznIMPneGnmlKrXxEcJmGBoyrPM4wrywtGkqdVVFFzkc5/wXB8HX0X/AAT3+K37TvgKaPQPjz+w3/Z/7XnwB8f26eXrHhbxZ8JL1Nc8VaPDdxsk03h74lfD6HxV8PPGmgyyHSvEHhzXbuw1W3mjSAj5PM87XB2c8HcbQwrxbyni7hnIc3y+M/ZU894P424iyvg7irh7HzXvSwGLwWcU8zjBSUqGcZZk2Z0JRxuCw1RfQ5VltDiTLuJ+EcbVq08HnvDWe4jC16EKM8TlvEvD+T5lxBwjnuW/WIVaWHzPK88y7Cuhi1B1Vga+ZYFzeFxmKhKh+2x8Wf2yPjl8AP2X7L9kP9m34zfEz4TftOeEdH8cftIeP/gR8V/2aPh18YPA3wa8QeCtG8Q2Xw3+GN/8fPjr8Ho9G8X/ABbbX/7Av/idoM2p6n8PPBtl4l1Dw1Ba/EHUfB+vaf8ATcUcOQy/j7iLg3iHA1cx4X4ZxOcYPMKUa1GlhuMM3wGd4zKsNw3mLo4yGYYPhuNLBYjNOKVSpUsRnGFqZXwxl+Lhhcw4hx+C+Z4Sz7E4/gTI+K8BVoYDirPcv4fxmChVoSxMOGaOY5XHMMxz2hTr0KuCx+cYKpVpYHhvCYl1cDh8fKvn+b0cRh8rwmR5l9z/ALF9lruj/s0fDfw3rf7Kq/sYQeEbbWvBvhL9m3/hM/hv45n+Hvw88KeI9X8P/D1b7xD8Ktc8S+Bn1HxJ4Q0/RvFOo6ZoPiPXo9GvdWn0a/8AEOqaraX2oy9ma4qtjsRTx+LzCjmGOxuEwmIzCWHoVaGFweLnSallWFhUwuDh9WyulGjg6Cw2Ew+Ap0qcMPl9COCpUDPLsLRwMMVgcLhK+HwWGxTWDr4qvGvjMz9vQoYzMM1xk/rOLrSxWMzbFZhKvXxmKrZhjqkHmmPqPFYqrFeg/tA/Hr4T/st/BH4m/tDfHHxbY+Cfhd8JvCmqeMPGfiO/YlbXS9Oicpa2Nsrefqes6vdG20nQNFs1k1HWtcvdP0fTYJr+5ghb5fOs3w+R5dWx9enVxElOhhsHgsMqcsZmWY4utHC5fluCjVqUqcsVj8VOlh6PtatOhTlUdbFV6OGp1q6+hyjK8TnWYUMvwjpxnV9pOrXrylDC4PCYelVxGNx+MqqE3RweAwtCrjMZW5Zeyw1OrPlk4Wl+Lv8AwTz+LHwH+IXj3x9/wU8/bG/aP/Z18LftFftC+G7fw18GPg/r/wAePhMZv2O/2PoNQbWvA/waEcvi4iy+J/j6QW3xI/aG1dDHNceNbjTvBaxQaT4StIT9HTwC4OybGZHiMVgcXxJm1fD5t4k57gsT9ZwGIzfBwrrLuEclxzUIT4R4BoV62AwNTDQp4XPM+q57xXiJYuWMy/FR8GrjocVZng8zwtHG0OF8jp4jAcBZZjaboYqvTxjVPN+O81y+Mpxw/EPGUqNNYWjVniMbkvCVLKchWJhVlm2Gly/7U/8AwUU8Ffta/sI337Q/wF8O/Dzxh8Mvh3/wVI/Z/wD2a7OX4j+FfBvxh+HHxn0Lw/8AtZ/Cf4czfFbwYl2hs9Hjj1bxNH40+Fvi3TLi51HTdW0DR9ds7maC6Rk4cpw1eXFv0Ys0xNCWGpeI3FGKxeGw1ehUwue8OUY0/FXK8vzTB4qcaeKynPqmF4QnUaVOFXCZfnuOyrGUXi6UqpHE+LwtDhH6ROWYarSx1fgXgXFwxc3y18ozLMHw1whxHmOS5jgZOVHM8swtXiBZZiac5uhi8Zl8MfQqPCTjSn67+2D/AMFQvFP7PH7RfxB+EGnftW/8Eo/h1aeFG8OiLwd+0j8Zfjj4Y+NGk/2t4X0jWn/4TDQvCnhPUdDsTePfNfaN9hu5fO0GfTbi5K3UkqDzstxcsbSxU5VsFW9hmOYYNSwNSpUhCOFxlbDqjiHUjFxxtFU4wxlON6cMSqsacnCKk/dxmGWGWDapYqn9YwVHEt4mEIKo6k60HVw3JJ82Fl7NKlOf7xy9pzRtGLf1x8DfiN4h/bp/Yxv/ABXJ+0l8OEuta1nxVpuofFT/AIJ//ELVLzwpeaT4enliufC/h/4gfEXwXd+KPDuq3UTfYvE2r+GLbRfF2izNHN4M8XaTqITUxnx9hamXcI18zoSzXCTjwrnud2qT+qUMwr4ajxLg8JUwuJwlSnjnl2FxWEw2KUqGKwtatm+Ar4HGvEZLLGYDEcvDOO9vnOPwknleJdDOctyylKEFjK+XRq0chzGssbhMZTqYF5hXo4uvTjRxGHxeEjlGPw2LpU4ZrGji6P5kfBr4B/En/goT/wAGvHhb4HSeJdc8bfF/42fsbajceH/EnjXxFqOta/4q+K+h+JdT8ZeDJPE3ijXLu91C+uNc8WeH9Js9T1jU7qa4MdzNdXE5ZC59fxao4vBUuGs14fwcY47hnI/AXjTB4DL8JTU8VPh3hbgDiPMcDgMJSlRpyxub4bC43CYWHPTjPG4qk6lRKVSRr4WY2jl+f8VYbMcdNYPF8d+P/B1bMsyq4jFvA5fnPHPiTwjQzDFVJOpXr0smw2Mp4pwXNUdHDKlTjeMIv621Wwtf+CyX/BFPxx8MPAXi61+HnxC+Pf7Ol98H/Glt4jgv4b74N/tG+GNNs9I8efDL4paHBbya7oV54O+Imi3fhvxppUmn/wBrroplv7HTrmG5sPNjxYyPD8QVq2N4TxmExmSZtxDwx4h8F5jVqKeW53w9g+Lsu4tyinPE4eOKjSlisPl/9kZhKnDE1MnziONw2KwtTF4HEYN8XhZjcRwlQwuS8SUasM34ayXO/D3iqhCjCWKweYVuGMx4SxuaYXC1a9CNalWoY2HEWSRqYijRzPLK+WYini6eGxUMUfMfxS/YL/4Kq/GbVf8AgmZ8WPGF9+xfaeKf2E/iHpGsf8M26d8UvjbJ8CtZn0z4JeJPhxYfHPUviK3wEh8U+J/HmgeI77R/EvhP4WR+APD2heF/D9rrPhez+K+oat4gvfF9p6uMzCdfxTzTxDwuIqYepxHw/wCJ+UVpYmh9clwc+OquWwjHKcDTxeBfFdSeC/tinxBjMwzTJI5hN8OZZlWCymGDzniLHeRl2S0sB4XZf4czi6tHh7NPDDGYTE4etHDVuKqHAWOeJlh80xM8Hif9W6OI+q4Cnl9HBYXNKVN1s6zfOqOaVf7A4cwf2Z8OPFfjv4kf8FdvHfw98ZJ8J/Hmk/skfsO/CLVdQ8b2nwk0nSfGngv49/tK+N/FFt4q0f4e+Lr/AFjxH4n8JeBvGXgj4KWviXWvAk+u6pd41Hw0mqeIdTt7CwlblyGpgMRhPFvO8HQxuCiuOOGeAciqVK1N4jF5BgeGKPHOfZNm+Lw+EwlPOoZPjeIeDMZhq3saFCnmOKx01g41KdDl9POaeKoPwtyrG06FfEYvI+L+Nc0qQpTeBo43BZrhODOH82yzD4irXq5diszjieOssnUjVlOWXZY6KqReJx/tP1nrlOkKACgD8R7f9lf/AIKNfCv/AIKLft8/tnfC3w7+yR8TNJ/ad+HPwF+DvwLg+J3xu+MHgbX/AII+E/g14V1UnVPFmi+Hf2afH9p4w0rxX468YeJ/E+q+DfD3irQ7gnSvD9qvidJNa1LVNI83JcPjsBwrxZkSxFDK814v43xXFmOz7C0pZnRw0MLl9XhTh7nymtLLf7QxuV8L4HLMXh6Esbh8I82xmcZdWxccJGnmVbszieX5jnvBWbvCSxGG4N4OzLhb6jzU8BjM2lnXEWG4pzKpHM4Qx8cvo/2jGplrxFTBYzEf2fTweYU8JOtQ/smp4b4h/Zjm/Yb+GX/BNT9grQ9f8DfHvxl+15/wUA1f4k/td698W/hN4X8Tab8cNZsNJ8fftWfHz4yweF9UlvovBeseGPE/w/8ACtn8ML2K51KbwhGfB0Nxc6jrVjZ6ofoslr5W+NfD7hbK8LjcFwn4XeFnGGacMRliJ1s2yCPBeCy/KuFs6WdSjOtQzjNeOuOcHXzCpTlH2n9s5tQwVSjRo4aUfGzWhjJcJeJ/FeZ0sPis94/404UyrNaWFhUWR1pccZzTynM+GoZZiJzhW4fyzw/yTNpU8NNR9v8A2HTxFehGONx+Gf1H/wAFxPGuoah+wb4//ZD+Gywa/wDtFft7TWX7J3wE+H9uzTavrt98RtQtdO+JXjGazt1mubPwZ8KPhm/ijx3458UzQjRfD2l6fbnVbuGW9sEk+Sx+SQ4zz3hHgn6xUwtHGcUcN8TcR5lSjTqR4d4K4J4iyziviHiDHU51If7LbKMJkeEpxbr47Os3yvLMHSr4uvGi/psszOjwzlnE3F2Lw9XE4fKOHs8y7L8HQqU6OKzfiriTJ804f4VyLLJ1pRpVMxxeaY+njfYOcXTyrAZrmFRxwuFxNWP6k/CjwBpvwm+FXwz+FWjSNLpPw18A+C/AGlSuMPJpvg/w3p3h2xkYdme202JmHYnHJ3E/b8SZzU4j4k4h4hrU1Sq57nWa5zVpJtqnUzLMMZjZ003uoSxHKm9WrPdO/wAVwxlE+H+GeHchqV/rVTJcjyjKJ4m3K8RPLsvo4OVflStH2zoqpbS3O1a6O+rxT3Dwn9ov9mP9n79rv4Z3Pwb/AGl/hX4Z+MPwyvNX0nXrzwR4vhu7nQLvWNEmln0e+urW1urY3EmnTyvcWqyu8Udx5c/lmaKGReTEYHB4qvgcTiMPTrV8txFTFYCrNNywuJq4PF4CpXo62jUng8ZisM52v7GvWhe0pX6aGMxWFpY2hh686VLMcNDB46EWuXE4WnjcJj4Ual024RxeBwuISTT9pRp3bSd/z/8A+HBv/BF//pHR+zv/AOE1qf8A8t66zmPoC9/4JgfsHT/s3+Hv2R9J+Alr4H/Z88L/ABL0T4w6H8M/hT8Qvi58IdNs/iZ4e8SW/i3Q/Fb6v8K/H3g7xFfXWmeJ7Ox8SWtnf6xcaUmvafpGrGxa/wBN0y5h2niMRUzThLOalerPMOB8RLFcJ1pVJyp5NiZTzWbrUMK39VrScs5zVr61RrJLMMeklHEV1LlhgcFTwPFeWxwmH+p8a4eWF4qoujTk84w88LlmCqUsRVlGVanGphMoy7C1Hh6lKVTD4alRnKVN1FL7yhiSCGKBDIyQxxxI0001xMyRqEUy3FxJLPPIQoMk08kk0rEvLI8hZjnObqTnOSipTlKbUIQpwTlJtqFOnGNOnG792EIxhGNoxiopG9KnGjSp0oObjThCnF1atWtVcYRUYupWrTqVas2ledWrOdWpK8qk5Tbm+H+Jnw38NfFvwRrnw+8X3fjOz8P+IIUttSn+H/xN+Jnwm8WeQkqymPTvH/wn8X+CvG+iLMV8u6/sXxFZG7tWlsrwzWcs0L8GPy7B5nh5YTHU5V8NNVYVsP7fEU6GJpVsNiMLWw+MpUatOGMwtWjiKsZ4TFKrhpTdOs6Tr0qNSPZhcXXwVVV8NKEKseVwqToUK0qcoVadWFSi69Kp7GrGdKLjWpctWKc4KfJOopeTfssfsifAX9ir4Y2Hwa/Zx0Pxx4T+GekRw2/h/wAGeK/jd8dvi9pHhaygmvZ49M8HL8Z/iV8QbjwdpBnvrmeTRvDE+m6VNM6ST2ckkUDL7eLzLG46lhqWLqxrrCUqGHoVZ0MP9ajhsNgcDl2Dwk8YqSxVbCYHBZfhMLgMJWrTw2Bo05QwdKkquI5/MoYLDYavi8RQhKlPG18RisVGNWt7GtjMXjcXmGNxrwzqOhHG5hjsbicZmONhTWKx+Kqyr42tWqqMzvfDnwJ+DPg74qeOPjb4Q+G3hXwv8UfiVpunaX8RvGvh3S4dG1fx9BpLQjSLrxsNNFta+KtY0qGCKx03xDrlveeILHSUXRrTVI9JzZnhwv8AsOCxeXYP/Z8BjcwjmuJwdNJYWWZ8mIhVx9Ojf2eHxWLWIm8wr4eNOpmM44apmMsRUw2EnDqxC+t4nCYzE/v8XgsFPLcLiql5Yinl0qlKrHAOs/3lTCUKlJTwmGqynRwcqmKeDhSeJxjqesUAfM+j/sffs86B+0540/bA0nwXqlp8c/H+ieF9C8X+I0+IHxJfwvrUfg/QNU8LeGNbufhdJ4uf4aDxho3hjV9T8L2HjmPwivjK28N3+qaHb65HpuoatbXDy6UspwmbYHAznTwudZjic1x1GpOWIgsfjMLw9hMwrYFYl1nlSzSjwtw9/atLLPq1LMqmU5ZVzCFerhaM1WPlLM6mT1ca3UnkeAjlmXypt0Gsvp5jnmaYfC4z6u6SzKlg8fxDnWLwMcx+s/U6+YYmeFdNqly/TFIkKACgAoA+aPj3+x/+zz+054r+Dfjf4z+DNV8ReJvgRrnibXvhnq2jfEH4k+Bp9Lk8Y6Gvh3xloutJ4B8XeGYvGfhDxhoscWl+K/A3jFNZ8HeItNjGm65od5p8l1bSvAOWWZzDPsFKVLMoZdUyl1HKVTDV8vnnOSZ/Chi8vqueAxv1XOuHcmzjL6mMw1arl+aYDB4/AToYulGu7xM54vJ8TkVacnl2KzDBZrOFNuhiaWY4DAZ3lmGxeEx9B08dgayy7iDOMBVlg8TR9thMfiaNfnjyNd9pvwI+DGkfGDxB+0BY/DXwqvxn8S+HtP8ACGq/FK50uG/8cDwfpqwfZfCOla/f/ab3w94Waa3hvrzw3oEun6JqOrIus6nYXOr7r4mGf1KjmFDCf7PTzXFUsZmipe7PMsTQpqnhZ4+ov3mLjg4KSwNGvOdHBOriJYOnSnXxMp54hLFSy14lKt/Y+HrYXKozSdPL6WIq1auJeDp/w8PWxTquGKxVOKxWJoQw2FxFaphsNhKVP1mkMKAP/9k=" alt="" />

其中 ai 表示第一列火柴中第 i个火柴的高度,bi 表示第二列火柴中第 i 个火柴的高度。

每列火柴中相邻两根火柴的位置都可以交换,请你通过交换使得两列火柴之间的距离最小。请问得到这个最小的距离,最少需要交换多少次?如果这个数字太大,请输出这个最小交换次数对 99,999,997 取模的结果。

输入格式

共三行,第一行包含一个整数 n,表示每盒中火柴的数目。 
第二行有 n 个整数,每两个整数之间用一个空格隔开,表示第一列火柴的高度。 
第三行有 n 个整数,每两个整数之间用一个空格隔开,表示第二列火柴的高度。

输出格式

输出共一行,包含一个整数,表示最少交换次数对 99,999,997 取模的结果。

样例数据 1

输入  [复制]

 


2 3 1 4 
3 2 1 4

输出

1

样例数据 2

输入  [复制]

 


1 3 4 2 
1 7 2 4

输出

2

备注

【样例1说明】 
最小距离是 0,最少需要交换 1 次,比如:交换第 1 列的前 2 根火柴或者交换第 2 列的前 2 根火柴。

【样例2说明】 
最小距离是 10,最少需要交换 2 次,比如:交换第 1 列的中间 2 根火柴的位置,再交换第 2 列中后 2 根火柴的位置。

【数据范围】 
对于 10% 的数据, 1≤n≤10; 
对于 30% 的数据,1≤n≤100; 
对于 60% 的数据,1≤n≤1,000;
对于 100% 的数据,1≤n≤100,000 ;0≤火柴高度≤231-1

题解:

这里引用ssoj官网题解:

贪心+逆序对。分析如下:

对距离公式化简得:

∑(ai-bi)2=∑(ai2-2aibi+bi2)=∑ai2+∑bi2-2∑aibi,要求∑(ai-bi)2最小,就只需要∑aibi最大即可。这里有个贪心,当 a1<a2<…<an ,b1<b2<…<bn时,∑aibi最大。

证明如下:

若存在a>b,c>d,且ac+bd<ad+bc,则a(c-d)<b(c-d),则a<b,与a>b矛盾,所以若a>b,c>d,则ac+bd>ad+bc
将此式子进行推广:
当a1<a2<a3<…<an ,b1<b2<…<bn的情况下∑aibi最大,即∑(ai-bi)2最小。

然后,将两个序列分别排序,确定每对数的对应关系,明显,同时移动两个序列中的数等效于只移动一个序列中的数,移动的时候可以将一个火柴序列不动,只移动另外一个序列。

于是可以构造一个数组C,C[i]表示最初的第i个数应该移动到C[i]位置。于是问题转换成对C[i]数组排序,每次可以交换相邻两个数,问最少需要移动多少次的问题了,也就是求这个序列的逆序对数量的问题(这里用归并排序思想实现)。

例如:
对于数据:
4
1 3 4 2
1 7 2 4

先排序:
1 2 3 4
1 2 4 7

aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCACSAYgDAREAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+3n46fGT4i/CT/hFv+EA/ZO/aA/ag/wCEg/tv+1v+FF+I/wBljw//AMIP/ZX9kfYP+Ep/4aX/AGlv2d/tf/CTf2lef2J/whX/AAmH2f8A4R/V/wDhJP8AhH/O0H+2wD4f8Df8FBf2h/2gvCvw28bfs8/sWeH/AAN4W+KXiDXPDPw41j9vn9r/AOEn7OUHx71HT9O8beIdNuf2U4v2UPDv/BRC5+OPh+/8E/C74i/FGHxZqcHw08K+Mvg1ZeFfjR8CtZ+Nvwp8Q6z4x8IAH0B+1t+2frf7Jc/h68vP2P8A9p/45eCfEfiD4OeBrf4k/BTWf2R4PCtj8TPj18ZdC+A/wz+G2oaT8b/2q/gr8RB4g1n4ieMPAtjda5Y+Bb74e6Pp3jTStU1Txta22leLz4ZAOf8AEX7dd14X+HUvibxd+zv8QPhL8TbD9oD9jP4P6x+z98Yvif8As4y/FPTPAn7Zn7U/wy/Ze8EfHq6g/Zv+MX7Tfh/Tvh+3iDxd8RbnwfaeItZ8P6x8QPEfwO+IXhOCHw7ZW8fi6IA+/iQoLMQFAJJJAAAGSSTwABySeAKzrVqWHpVa9erToUKFOdatWrTjTpUaVOLnUq1ak3GFOnThFznOclGEU5SaSbGk20km22kkldtvRJJatt7I5bwR468EfE3wnofj34b+MfCvxB8DeJ7JdS8NeNPBHiHSPFfhPxDpzSSQrf6H4i0G8v8AR9WsmliliW6sLy4gMkUiCTcjAdFSlVpey9rTqU/bYbC4yj7SEoe1wmOw1LG4LFUuZL2mGxmDxFDF4WvC9LEYatSr0ZTpVITkTjKnWxWGqRdPEYHG47LcbQmnCtg8xyzGV8vzLAYqlK08Pjcvx+GxOBx2FrRhXwmMw9fDYinTrUqkI9VWYgoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD4A/4KT2/9u/s4r8P47D9n/xte/E74geF/B+jfAj9oT9lL/htLR/2lPEdta61408NfB3wH8Brn9oj9mTw/qPxAXxB4R034nr8QvHnxItvhZ8GfAnw08d/F74t3XgX4ZeCfFnxf+GoB/PD+yl+z34q/wCCX/xW+PeueEPGX/BOD4DaR+z9+0/q3wv+PH7Ver/sI6j8CvBf7S+t+MP2L/2Tf2jD8G/2jv2qNW/bM+LNt/wTg+D/AO0F42+PeiTfDWy+AH7Odp+yP8L/AI+/ADwhb+HPANlq/wAYfht+xr8eQD9f/wDgqB8L/FXjyDwh40+KXwb/AGYP2tPBPwz+MGgW37I//BO74s2Wo6xB+2X8b/Fvwa+IHhjU9Z8R+L9U8A+L9I8E/GDwTpHi/wCIV18KvDOsfCr4tfs1fCn4NfDr43ftEftPeLNAtvFvhH49/wDBM8A+P/Hv7L/ir9lKy8JfCK8fxB4u8E/Br4P/APBpn+y/4e+M1z4L1Hwl4V+Jvir9nD/gsD8SvDHjF9GSW+17SLPxBZ6Rr3gXxV4m8F2PirxFqPgzTvH/AITGqX1xba3o+o6mAf0deMvCXhXx74S8S+CPHXhnw/408F+LdC1Xw54r8I+LNF03xH4Y8TeHtYsprDV9C8Q6BrFteaVrWjapYzz2Wo6XqVpc2N9aTS29zBLDI6Hy87o0a+UZjCvSp1oQwlXEQjVpxqRjXwsXicNWjGaajVw+Jo0sRQqJKdGvSp1aco1IRkurBYnE4PF4fFYPEV8LiaNWMqWIw1WpQr0pP3XKnVpSjUhJxbV4yTs2tmz8P/2dviT8Rf2eP+CFHwl8ffADx9+xr8DfHXgXwF4bsPBHjT9ubxTrvwz/AGQPB1hfftAweFb6y+JPiPwVf6JrHh60vPC+paj4b+HttpF5Zw3HxD1DwXo8yPp11PbyexTxOIxmQeH2LxdetisXivCPwaxOKxWJqzr4jE4iv4U8G1a1evWqylUrVq1SUqlWrUlKdScpTnJybb4J4fD4PPeP8JhKFHC4XC+LPjFh8NhsPShQw+Hw9DxU4xpUaFCjSjGnRo0acY06VKnGMKcIxhCKikl+8lZmoUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBz9z4T8K3nirRvHV54Z8P3Xjbw54f8TeE/D3jG50bTp/FWheFfGmo+E9Y8Y+GdG8Qy2zavpfh/xZq/gLwLqnibRrG8g07XtR8F+E77VLa6ufDmjy2YB5B4A/ZV/Zx+GHws8a/A/wAFfBf4f6Z8H/iR/wAJHB4/+G17oFr4g8HeMtH8UeHLPwNeeEfEmh+Ixq9lq/w/0j4ZaR4c+DXgr4dXsUvgT4d/AnwZ4A+BPgDw74a+D/w/8FeCdBAN/RvgR8M9D+Mviz4/waX4g1T4reL/AA/beE5fEPivx/8AELxtp3g7wqkHhmLWPDPwh8HeMfFOu+CfgX4f8c3PgrwTrfxU0b4L+HPAWnfF7xV4J8GeL/ijbeL/ABT4T8PaxpoAfEf4A/Br4veKvhj42+JXw98P+MPFPwc8QN4m+HesarDO0+h6idR8P+IY7a6it7iC28R+H7Xxt4L+HPxR0/wn4og1nwrpvxl+EfwU+NFho1t8Vvgr8KfGPg4A9E8T+GPDXjbw34g8GeM/D2h+LvB/i3RNU8NeKvCnifSbDX/Dfibw5rljPpmt6B4g0LVbe70vWdE1jTbq50/VNK1G1ubHULG4ntLuCa3lkjbDEYbDYulLD4vD0MVQnKnKVHEUqdalKVKpGrSlKnUjKEpU6sIVabcW4VIRnG0oprowmLxWAxWHx2BxOIwWNwdelicJjMJWqYbFYXE0JxqUcRh8RRlCrQr0akY1KVWlONSnOMZQkpJM8H0/9jH9j3SPgprv7Nelfso/s16Z+zp4o1WHXfEvwC0/4F/C+y+CniLW7fVtH16DWNd+Fdt4Wi8C6vqsGu+HfD+tQ6hqGhXF3Fq2haPqKTLeaZZTQd1bFYnEU8LSr4ivXpYGhLC4KlWrVKlPB4aeJxGNnh8LCcpRw9CWMxmLxcqNJQpyxOKxFdxdWvVnLz6OEwmGqYuth8Nh6FbH4iOLx9WjRp0qmNxcMLhsBDE4ucIxlicRDA4LB4ONas51I4XCYbDqSo0KUIfSlYHQFABQAUAFABQAUAFAHxB45/4KG/s3eAviZ8SfhFeWH7T/AI08bfCDxBofhP4kx/BT9g/9un9oXwr4T8VeI/h74J+K+k+GdQ+InwH/AGcfiP8ADuXxBL8O/iP4F8VXWjWPiq61HS9O8UaUNUtrK5nNuoBz/wDw8s/Z1/6Jz+3/AP8Aip3/AIKm/wD0G9AB/wAPLP2df+ic/t//APip3/gqb/8AQb0AH/Dyz9nX/onP7f8A/wCKnf8Agqb/APQb0AH/AA8s/Z1/6Jz+3/8A+Knf+Cpv/wBBvQAf8PLP2df+ic/t/wD/AIqd/wCCpv8A9BvQAf8ADyz9nX/onP7f/wD4qd/4Km//AEG9AB/w8s/Z1/6Jz+3/AP8Aip3/AIKm/wD0G9AB/wAPLP2df+ic/t//APip3/gqb/8AQb0AH/Dyz9nX/onP7f8A/wCKnf8Agqb/APQb0AH/AA8s/Z1/6Jz+3/8A+Knf+Cpv/wBBvQAf8PLP2df+ic/t/wD/AIqd/wCCpv8A9BvQAf8ADyz9nX/onP7f/wD4qd/4Km//AEG9AB/w8s/Z1/6Jz+3/AP8Aip3/AIKm/wD0G9AB/wAPLP2df+ic/t//APip3/gqb/8AQb0Ac/4T/wCCrH7Jfj3wr4Z8deBfD37b/jTwT408P6N4s8HeMfCf/BLb/gp54j8K+LPCviPTrbWPD3ibwz4h0f8AY/vNI17w/rukXlnqmjazpd5dadqmnXVtfWNzPbTxSsAdB/w8s/Z1/wCic/t//wDip3/gqb/9BvQAf8PLP2df+ic/t/8A/ip3/gqb/wDQb0AH/Dyz9nX/AKJz+3//AOKnf+Cpv/0G9AHP+Jv+CrH7JfgvTrbWPGPh79t/wnpF54g8J+E7PVPE3/BLb/gp5oOnXXirx74q0bwL4F8M219qn7H9rbT+IPGnjbxH4e8HeE9GilbUfEfirXdG8PaPbXmr6pY2c4B0H/Dyz9nX/onP7f8A/wCKnf8Agqb/APQb0AH/AA8s/Z1/6Jz+3/8A+Knf+Cpv/wBBvQAf8PLP2df+ic/t/wD/AIqd/wCCpv8A9BvQAf8ADyz9nX/onP7f/wD4qd/4Km//AEG9AHP3P/BVj9kuz8VaN4FvPD37b9r428R+H/E3izw94Ouf+CW3/BTyDxVrvhXwXqPhPR/GPibRvD0v7H66vqnh/wAJ6v498C6X4m1mxs59O0HUfGnhOx1S5tbnxHo8V4AdB/w8s/Z1/wCic/t//wDip3/gqb/9BvQAf8PLP2df+ic/t/8A/ip3/gqb/wDQb0AH/Dyz9nX/AKJz+3//AOKnf+Cpv/0G9AB/w8s/Z1/6Jz+3/wD+Knf+Cpv/ANBvQBz+jf8ABVj9kvxHqPizR/D3h79t/XdX8BeILbwn460vRv8Aglt/wU81TUfBfiq88K+GfHVn4Z8WWNj+x/Pc+HPEF14J8aeDvGNto2sRWeoz+FfFnhnxDFbNpGvaXeXQB0H/AA8s/Z1/6Jz+3/8A+Knf+Cpv/wBBvQAf8PLP2df+ic/t/wD/AIqd/wCCpv8A9BvQAf8ADyz9nX/onP7f/wD4qd/4Km//AEG9AB/w8s/Z1/6Jz+3/AP8Aip3/AIKm/wD0G9AH1/8ACf4peBPjj8LPhp8a/hbrv/CUfDL4wfD/AMG/FL4deJv7M1jRP+Ei8CfEDw5pvizwjrv9jeItP0jxBpH9r+H9X0/UP7M13StM1iw+0fZdT0+yvYp7aIA9AoAKACgAoAKACgAoAKACgAoAKACgAoAKAPgD9jf/AJOK/wCCsX/Z/wD8OP8A11l/wTToAP8AgqB+1P47/Yu/Ys+Iv7RPw2f4fweLfCvxA/Zt8I22ofFKx0fUfAmi6P8AGX9p34OfBTxZ4i1218TfHD9mjwkf+Eb8JfEPXNe0yfxt+0F8GvAlnrGnafeeOfiL4V8JQazqtuAfkD+x5/wWZ/aA+O/7af7KH7O2s/Ez9kD4leEvjv8AED4l+EfGOn/C3Qv2QI/HegaP4O/Zi+Pnxr07xFoV1+zN/wAF2v8Ago94tstvi34VeGdB1OfxZ+z7YeBJNH17ULO5+IvhzxbdeD9K8RgH6vftDf8ABQHRPgP+1B+z58GrzwZ8YL7wT4/+MHh74B/GLxrc/siftcR/DP4deKvjl4f0z/hmz4haN+1jY/DC8/Zp17w/r3xpvPAv7Mnib4fWOvarqMvxC/aL8J+JtU+Ifw2tvgL8SPBvjkA8A8ff8FdfH3hXTvH0ui/8Evv239S1f4T/ALT/AOzT+yn8TbHxN8Rv+CenhrTvDHxM/aU8Vfs02fhfw/bapoP7b/jq58QeIL3wT+1P8LPEPhM6To83w91TxV4l0bwd8Qfib8J9It/Hvjr4eAH0/wDHT9tu1+CP7U/hb4SX3hX4geMvhlov7P8ArfxF+Otz8Hf2cP2jv2jPin4B8d/E/wCIukeGf2PoLXwn+z54J+IviA/D/wCKfh/4L/t0yeMPEUXgLXtH8IeI/hB8PtN8Z+Lvhxe/ET4b6N8WwDx/9nX/AIKcp48074M+B/i1+zT+2/o/xk8d/GDxf8FvEmv6N/wTb/bz+Hvwa0jTtA8VfEbw18PP2k/Fmu/Fb4N2mkfB74P/AB50jwf4D8Z23g/UviH8TPFX7Pk/xv8ADPhL4ueJ77w38Ovip8X/AA6AcB/wUe/4KjfHP9hD4havpPhf9iPxB8Zfg34V+D/wy+LfjT4/6hc/thaX8PfDOneLfiZ8RvCHxVk1XxH+zv8A8E+P2uvh34a8P/sy/DvwLYfHj416l8RviT4A8VH4Z+J7U/DXwF8Q/ElvbaJqoBz/AOxf/wAFGv28P2rf2p/BPw28a/8ABP3/AIZz+AsXw/8A2ldd+K/jvx/p/wC3t4d8R6VrHw4+Ivw78EfA7UPBWv8A7R3/AATw/ZP+GWvf8LmstX8R+NvDnwtstc1rx3e/Cy/vPHPj/U/gd46+EGpfA34tAH7fUAFABQAUAFABQB8Af8Enf+UWX/BNP/swD9jf/wBZ1+HNAH3/AEAfMPhj9rH4e+LP2sPiR+x5pvhj4rWfxH+Fvwm8I/GDX/FfiL4c654V+Fms6B4y8Qal4esdL8BeM/Ea6X/wsXVNMuNPSbX9U8E6XrngjSZbxfD83i9vGOleJPDWhxllSGa4TiHF4eSpx4bzbJMox2HxLVDHVaufYfiDEYHGYfAtvFRy2T4ZzWhDHYylhKWOqUoVsp/tHBupiqemYU/7NqcPUa84VKnEmC4ix+CWGbxFKhh+Gq3DNDGRxuKpxeDpYytU4qwLo5bSxFfMsNSoVsRm2Eyyhi8mqZr9PVZmfAH/AAUs/wCTdfhz/wBn/wD/AASd/wDXpv7G9AH3/QAUAfOfwn/ai+GHxp+MP7QPwV8CJ4quvEX7Nl94G0nx9r2peHLnSfBmqav45t/FEkVh4E129kjfxknhm98Ia1oHi7V9Ksm8PaV4rstQ8KW+sX/iLQPFGm6FeDhLG5JDP6Vo4CrxBmnD1CNV+zxVetlWRcJcRSzGOGd6lLKcxy3jPKMRkuKxKoVM4wd85wFCtw9j8izjN+avi6eHz2rw9NTeOo8NZBxTOrBKeC+ocRZrxVlGCw9PFKXJXx2HxPCGZf2lSoKrQwE6tDAV8Ss3w+bZbln0ZUHSfAHxG/5Sm/sb/wDZgH/BSz/1or/gk7QB9/0AeQfGb4sXvwm8N2epaD8KPif8cvF+takul+GPhX8IIPAY8a+I5orefUNUu01j4q+PfhZ8LfC2jaJpNpdahqOv/EH4keDtEluF07wzpWoan408SeFPDOvZSqVPbQoUcNVxEnSq4mvKE8LSp4XB0auGw9TFVZ4vEYZVrYrG4KhHB4L63mdX6xLE0cDUwOCzHFYPopUacqVWvXxWHwdGnKNGnUxKxLWKx9WliK+FyzCxw2HxNSpjsXRwmMr0oShCjTwuDxuNxdfDYLB4rE0cL9mj9ozwN+1P8JNJ+LngPS/GHhq1uNc8X+DfFPgX4i6HF4a+Ivw1+I3w68U6v4G+Ivw28faDbahq9hp3i3wR4x0HWNA1Y6NrWu+HdRks01fwx4g8QeG9Q0rWr/sqUqLwuU5jg8ZhsyyrPsny/PslzTBxxUMNmGWZlRVWjVjRx+GwWYYPE4erGvl+aZZmWCwWa5Pm+Cx+UZrgsHmWAxeFo8s/b0MdmeWYzC18DmOT476jj8JiHQnKEquEwmZ4DFUMRha2JweNy/NsnzDLM6ynH4LE4jC47KsywWKpVbVXGPvlYFHwB+xv/wAnFf8ABWL/ALP/APhx/wCusv8AgmnQB9/0AfIf7Sf7Xul/szzQX+u/Az4+/EbwDo1ro2s/F34r/DDQfh5eeAvgR4T1zXY9DtvFvj3/AITj4m+A/GHi+w0+NNU8QeI/D/wE8I/Gfx74U8L6Q2u+JvB+k2mv+DD4nvL4fX80wGWOX1L+1c7yjhfLMbioVamGxvE/EGNy7LMjySlh8BTxua0pZnmudZLltPO8VltDhbCYjMnUzLPsDhMp4hxOTxmdWjlWRZvn2IrU508lyTPuJcbl9HneYLh/hrKMwzrOc2pqpClgXRw2CyvHLD4epjqeYZlicNWw2V4PG1aNeNL68qCwoA+AP+CTv/KLL/gmn/2YB+xv/wCs6/DmgD7/AKACgAoAKACgAoAKACgAoAKACgAoAKACgD4A/Y3/AOTiv+CsX/Z//wAOP/XWX/BNOgD8wP8Aguj4x0vR/iL+yL4R+CX7TfxA8Cftj+O/iBrukt+z/wCAPj9/wUc1j/hO/gTo/wCyx+294+8L6941/Yo/4JsfHnwJ+0PrHw/1j9ofwJ4G8O+I/wBpf4UfDrWPGPgT+x7OfxVf+O/hv4E1r4WawAflD4Cf9rz4g+AfhFrvhT4lfGD4a658c/jB+398JvA2h/tQft8f8Fc9Yn1D4t/Cn/goXpfwE+APhxNXsv8AgrD+xf8AFb4bfswaX4W+Mnh34A+NPir+0H+xx8M/2h/Cnxl/Z6sfh5qPwR+MH7Uf7bH7JHwS+LIB+33/AAUB/ZL+IXib4wf8E5vDXhv9qX4weBo5v2n/ABX8Dv2fk03xR8TNSg+F/gvT/wDglB+3tdeK9a+LfiTUPiz/AMLk/aH+MHxa8SeEn0Dx7+0LdfF/4afH3wP8GriPQv2WviX+zX+0H4h+MX7UvxhAPH9U/wCFWaR+z/8AETxF8OP+Ff8AgL4ZftTf8Ff/APgl78WP2Q/hToP/AAjnhe61f9lj9lf9r/8A4I3/ALBUXxL+G3gXQfK8P3/7P/iLxB8DvD/xF+CPjL4Yz+Ifh1q/7OPxw/Zq8XLqXh29+Jdl4O0gA+oIP2VvCvxQ/bp/4KgfBzxx8RfjBr0fx4/Yg/4J+eLLj4iXni7TpfiF8HvFV5+0j/wVOuPhR4m/Z2kk8Ov4J+CniD9ma58K/DzX/wBn3WfBngiz1Hwz8TPh1oPx58W3Pjn9oPXfiJ8V/G4B3/7HGs/GX9pT9oeL45/tG+E/D/wx+Mn7Gv7MHw//AGQ/id8OfCNzAdO039rj9q/4Sfskftp/trWUElt4m+JekeIfg/4G0jT/ANjzwV+z9r2jfEFdbt/FVt+1DY+M4vHnhuX4Q+PJgD8of+C+f7MXws+JH7R37PnhHRv2Y/h/4p8QftPfs/8A7ZGr/Hzxz8Ov2U/Dnjz9o7xn/wAKpuv2LvhR8PNbn+Nvw+/4JJ/8FXv2jfBf/CB+DPiv4m8O+HfFPhP4dfCn/hH7q78Iz23x08LeIPC3w98K+JQA/wCCL37LfwT8QftT/tP6V8Yv2NP2f7bxB8APh/8AsSfGn4F6z4//AGDvhF8I/in8N/Hfjb4i/tg22r+OPBXibW/+COP/AASJ+JsGb34IfD668Oara/BTxto/hrxH4UvdQ8H/ABjufEFz4p8J+DAD+r2gAoAKACgAoAKAPwH/AGfdKufGP/BOb/g3i+FNx4v+J/hLwb8XfAH7LfhH4ip8Jfi78Uvgf4o8S+F/D3/BI/8AaO+Kul+H5viB8GvGHgP4gWGkR/ED4ceCPEl3YaT4nsLfVLjw9ZWmqR3mmvc2c/8ARngDjKWR5F9IjjClknCWc55wX4J5XnXDEuM+C+EeP8pyrNsy+kD4EcH4vMqfDfHOScRcN4jGy4b4oz/K6OIxmU4irhKWZ162ElQxSpV6fkZrF1auUYd1K9OlicynTrfV8TiMLUqU4ZVmmIjB1sNVo1lH21ClNqNRKTglK8bp/rl8Hv2Yfht8Ddc1PxD4L8S/tDa3f6vpR0a7t/jD+11+1f8AtDaHFaG8tr4zaZ4Z+P3xp+JnhvRNV860iQa7o2k2GuC0e508aiLC8vLaf8+428WeKfEDL8Jlue5V4aYDD4LGLHUanBPgt4OeGmYTrKjVw/Ji828OOBOFM0x+D9nWnJ5djsZicvddUsS8N9YoUKtPqw2AoYScp0qmNm5R5WsTmOYY2CV07xp4zFV4QldL34xU7XjzWbT+PtM8Uyt/wWD8V2x8AfHGPRH/AGIPCPw3i+JE/wCzx8eLf4JXHjjTfin4p+J994ctfj3P8OY/gpdX8Hg7XtMuT9m8fSwSa3LP4OimfxlYahoFr+T8K0KsqniziZxWHpY/FeFFXAfXJQwNXH0+FafihleevA0MZKhXxrwWL4v4fcI4anVljcJi8RmOAWKy7K82xWB9DiJqjHwvj/HdvFhV/qSeYLAPiB+GE8n/ALVeB+sLJ/r0eAeJ+T+1Hg/ZywuXQreynxFw5HNv1HrtIPgD/gpZ/wAm6/Dn/s//AP4JO/8Ar039jegDzDwN8BvDX7Sf7Rv7fup/FP4j/tSBfhh+1J4B+GHgDRPhl+2n+2D8B/B3hfwQ37Cf7GHxNm0fTfAnwK+Ofw38FCW78efEzxz4l1DWZ9Am13Ub/wAQXC32p3FtbWEFp/XnEHiJmvhZ4YfRxwnCPC/hG3xb4R8R8WcR4/ivwJ8E/EPPM3z9fSF8deE4Y7FcQ+IXh/xRnzhR4d4U4fyrDYGnmMMvwuHy2k8PhKVWriKlbwKWEhjsbnEsRXx/7jH0aFGFDNMywlKnS/snLK7jGjhMXQpXdavVqSk4OcnN3k0kl9a3n7PmseC/gH8QPhD+zz8VfHHgTxd4osNb/wCEW+KHx08e/Hf9rjVvB2v65a2lhLqr3fxd+OifErVdNsbS2L6V4b0v4teFdN0nUZX1TS3srqa9N5/MHiJxVn3iPjqWZ5rQ4MyzFXybCYzC8LeHnB/AGRY7I8FmtLFZtllXIPDHLOBMuo43O8qnmGUT4hwtOjnmD+uYfHRxeInlmDoR+iypYfLJuXJia6hSxcsO62L+uVKGPqYSrTy/Fy/tihm+HxVHAY54bG1MuxeGr4LH06FTBV6caWJqTXw9+wz8C/2svg/+2b+1c3xf8UfA/VvhH/wpP9lTwd4Nk+D37I3xT/Z98J65d+DdN+JFjoNh8PtZ8aftUfHnRY9L+G2hTaho3jnw7ap4hvtT1DxR4O1CLV/AsGi3Oj+MePAYqjV4Z4iWLp145ljPFviDNKEZV8PQTo1vDLwdwOMzWGBhgqbnk2ZSy7B5NksMNLD4fLc04U4qTxmaxx9HK+FfBxOGqx4ww2Io+2qwfhxwvQx2Z4iWJx0cbVfiF42ZnXy+vja9apiKvFVHH5y+I8/zbHY7HYnMsv4kyb6xleExUpZ7nX69V5x7Z8AfEb/lKb+xv/2YB/wUs/8AWiv+CTtAHinww/ZC/ZN/aJ/ac/4KSeL/ANoH9l/9nf46eLNC/bA+HPhDQ/FHxj+Cnw1+J3iLRvCdp/wTu/YO1+18L6Vrfjbwzrepad4dttd8R+Idat9Fs7mHTYdW17WdSjtlvNUvpp/7L4s8avGTwy8J/ot5J4beLXiZ4fZNmPgnxPnWYZRwPx5xTwnlmOzmt9Jr6Q+XVs2xmAyHNcBhcTmdXL8ry3AVMfXpTxU8Fl2BwsqroYTD06fztDLcuxuPzupjMBgsXUhmVCnCpicLQrzjTWTZTNU4zq05yjBTnOagmoqU5SteTb+k/jt8Ufh7+wX8B/DOifB/9nrxtLoratD4G+GXwu/Zd/ZY+L3xO8HeBbzXr64vrvxN4n8Afsu/C7xrqXgn4beHp73UfFXim807wxHfawUvdM8L2GueMNWsNNu/5E4p4r4m434olmPFfE2f57xNxNKviM5434nr5zxRjqNDLcFRpVcxzXM8dUxWKzfNlhqeDyzhzJsZmGHlnGYzwODxWY5Fw1hM+4m4e+jo4ejgcuxGKo4GGIoZfLC0qGS4HF4DLMTmGIxuJ9lSoYeddShgcBRvWx2d5xDBZg8pyvD4qvgsqz7Pq2ScM570n7Fj/DkfBG2t/hd4W+Mmg+Gh4v8AGur6n4g+PHwc+IfwG+I3xQ8f+MfEF547+KXxU1j4Z/Frwp4B+JGiSeNPiR4o8U388niPwF4Psbq+S8k8FaQ/gAeFdQvZxa5cNk9OjClhsuweT4LKcky6OMoYytlmSZEp5HlmFxk6MnNYypQy5YzEV8aqeZZpUxLzzMYSxWaTrVuWlVqV8XmmJxNatiswxuY18wzPFSo5jSwqxmOar0ssyp5pWxOI/sPIsteX5Lw7gsPjsyy7IOHcDlPC2DzCbyKthMF9Z1wnSfhH8arie1/Zp/4OZbq1mltrm28RfGe4t7iCR4Z7eeH/AIIdfsISQzQzRsskUsUiq8ciMro6qysGANfvn0U6dOt9KL6NtGtThVpVfHzwep1aVSMZ06lOfiHw7GdOpCScZwnFuMoyTjKLaaabR5WetrJM4abTWVZg01o01hK1mn0aP0d8H/8ABPf9gb4e+KdA8c+Af2H/ANkDwP418KarZ674W8YeD/2afgx4a8U+Gtc06ZbjT9Z0DxBovgqy1bRtVsLhEns9R067tru1mRZYJkdQw87O/pK/SM4lyjMuH+I/H7xrz/Ic4wdfLs3yTO/FTjrNcozXL8VB0sTgcyy3H59XweOweIpylTr4bFUatGtCThUhKLaLp5NlFGpCrRyrLaVWnJTp1aeBwtOpCcXeMoTjSUoyT1UotNPVM+Tv+Co+l+HPjf4J/wCFAeDtJ/bBP7WPhy30X40fsoa58GvhZ+1BF8CtO/aE8F61H4x+Cep/Gb4s6f4Dvv2GNc8N+HfiN4G0PWfEPgr9qDxLrGj6DpsKatZ+HtN8S6v4Uv7v8UyN1f8AXHhrN8BXlhMVkOfYTL8zr5lGVPJo8K55PLKHH1SeCzOeGwWaufAuLznBUcy4e5+MsOsTm+RcC5lheKMwr4HEfSU8Zl2X4LFYfiHC47MeG87wGJoZxl3DkoVOJsxwGIoZllDyvK8Vg8Rh6uWZljquInDCYbP8flnCcsW8pzfjWVPhXC1MwofrLYJeR2NlHqM0NzqCWlsl9cW8Rgt57xYUW6mggZnaGGWcO8UTO5jRlQsxGTtiZUJYivLC050sNKtVlh6VWaqVKdBzk6NOpUSipzhTcYzmopSknJJXseBl0MbSy/AU8zrUsRmNPBYWGYYijFRo18bChCOLrUoqnRUaVWuqk6cVSpJRkkqcLcqt1idp8Af8Enf+UWX/AATT/wCzAP2N/wD1nX4c0Aff9ABQAUAFABQAUAFABQAUAFABQAUAFABQB+MPwh/a7+FPwB/a0/4KpeDvHXhP9p/XdX1L9t/4XeJre8+Cn7EX7aH7SnhWPTrz/gmH/wAE6NLhttQ8dfs5/AL4qeCdJ8QJc6NeS3XhPVPENn4qsdOm0rWL7RrfSNd0O+1EA+n/APh5Z+zr/wBE5/b/AP8AxU7/AMFTf/oN6APANE+Pf/BM7wz/AML0/wCEc/Yj/aA8P/8ADUH9r/8ADS/9if8ABDn/AIKEaV/w0R/wkH/CU/29/wAL0+wfsJ2//C2/7b/4Tjxr/a//AAn/APwkH9pf8Jh4p+2ed/wkGrfawDf1n9qf/gnx4j+HvhP4R+If2SP2n9d+FPgLw/c+E/Avwx1n/gil/wAFGtU+HvgvwrefDPxN8Fbzwz4T8F337Dk/hvw54fuvg3408Y/CW50bR9Ns9On+GfizxN4Dltm8La9qmlXQB6BrP/BQD9kvxHqPhPWPEPwT/bf13V/AXiC58WeBdU1n/gkJ/wAFPNU1HwX4qvPCvibwLeeJvCd9ffsXT3PhzxBdeCfGnjHwdc6zo8tnqM/hXxZ4m8PS3LaRr2qWd0AeQfGL49/8Ezv2iPtX/DQH7Ef7QHxz+2/8If8Abf8AhcX/AAQ5/wCChHxN+1/8K9/4WF/wgH2r/hNf2E9b+0f8IP8A8Lb+K3/CH+bv/wCEZ/4Wb8Qv7F+xf8Jn4j/tIA8f8J2v/BFHwF4q8M+OvAv/AASy8QeC/G3gvxBo3izwd4x8J/8ABvd+2r4c8VeE/FXhzUbbWPD3ibwz4h0f/gnzZ6voPiDQtXs7PVNG1nS7y11HS9Rtba+sbmC5gilUAPFlr/wRR8e+KvE3jrx1/wAEsvEHjTxt408Qaz4s8Y+MfFn/AAb3ftq+I/FXizxV4j1G51jxD4m8TeIdY/4J83mr694g13V7y81TWdZ1S8utR1TUbq5vr65nuZ5ZWADwna/8EUfAXirwz468C/8ABLLxB4L8beC/EGjeLPB3jHwn/wAG937avhzxV4T8VeHNRttY8PeJvDPiHR/+CfNnq+g+INC1ezs9U0bWdLvLXUdL1G1tr6xuYLmCKVQD7f8A+Hln7Ov/AETn9v8A/wDFTv8AwVN/+g3oAP8Ah5Z+zr/0Tn9v/wD8VO/8FTf/AKDegA/4eWfs6/8AROf2/wD/AMVO/wDBU3/6DegA/wCHln7Ov/ROf2//APxU7/wVN/8AoN6AD/h5Z+zr/wBE5/b/AP8AxU7/AMFTf/oN6AD/AIeWfs6/9E5/b/8A/FTv/BU3/wCg3oA/F79mL9uH4L6R+yL/AMG9ehXXgr9r+W9+D+hfAX/hLJ9M/wCCe37fWt6Pq/8AZn/BIn9qf4dXP/CrfEWjfs03/h/44+b4g8RafqGn/wDClNT+IH9r+BLfXfilpX234ZeF/E3i7SP3/wAG/wDk3X0sP+zAcOf+xTfRqPKzH/e8i/7Gtb/1R5yftD/w8s/Z1/6Jz+3/AP8Aip3/AIKm/wD0G9fgB6of8PLP2df+ic/t/wD/AIqd/wCCpv8A9BvQAf8ADyz9nX/onP7f/wD4qd/4Km//AEG9AHxB/wAFBv8AgoN8BvFnwG8A6XpfgH9t+1ubX9t//gmT4mll8Tf8Eyf+CkngvTm07wX/AMFJP2UPGOsW1trHjH9lDQtIvPEF5pGhX1n4T8J2d9P4q8e+Kp9G8C+BdG8R+NvEfh7w9qgBu/szf8FBvgNoXxp/4KG6pfeAf2357bxp+2F4J8TaPFo3/BMn/gpJ4j1Gz061/YB/Yb8HS23izR/D37KGqav4C8QNq/hPVLy28J+OrHw54qvPCt14Z8dWejT+CfGng7xDrv7/AOMn/Juvon/9mA4j/wDYpvpKnlZd/vee/wDY1o/+qPJj7C/4eWfs6/8AROf2/wD/AMVO/wDBU3/6DevwA9UP+Hln7Ov/AETn9v8A/wDFTv8AwVN/+g3oAP8Ah5Z+zr/0Tn9v/wD8VO/8FTf/AKDegD4g8ff8FBvgNdf8FJP2UPGMXgH9t9dI0L9iD/goN4ZvrO5/4Jk/8FJLPxVPqPiz48/8EydU0u50bwLefsoQeNvEfh+1tvBesReJvFnh7w9qnhXwXqN54T0fxjrOhav498C2PiMA3f2Zv+Cg3wG0L40/8FDdUvvAP7b89t40/bC8E+JtHi0b/gmT/wAFJPEeo2enWv7AP7Dfg6W28WaP4e/ZQ1TV/AXiBtX8J6peW3hPx1Y+HPFV54VuvDPjqz0afwT408HeIdd/f/GT/k3X0T/+zAcR/wDsU30lTysu/wB7z3/sa0f/AFR5MfYX/Dyz9nX/AKJz+3//AOKnf+Cpv/0G9fgB6of8PLP2df8AonP7f/8A4qd/4Km//Qb0AH/Dyz9nX/onP7f/AP4qd/4Km/8A0G9AH4vfF79uH4L6v+z1/wAHDWhWvgr9r+K9+MGu/Fv/AIROfU/+Ce37fWiaPpH9p/8ABHL9i74dW3/C0vEWs/s02Hh/4HeV4g8O6hqGof8AC69T+H/9keBLjQvilqv2L4ZeKPDPi7V/3/6J/wDylN9Gr/s//g3/AOvF4cPKz3/kR5z/ANirMf8A1ErH7Q/8PLP2df8AonP7f/8A4qd/4Km//Qb1+AHqh/w8s/Z1/wCic/t//wDip3/gqb/9BvQAf8PLP2df+ic/t/8A/ip3/gqb/wDQb0AH/Dyz9nX/AKJz+3//AOKnf+Cpv/0G9AB/wSd/5RZf8E0/+zAP2N//AFnX4c0Aff8AQAUAFABQAUAFABQAUAFABQAUAFABQAUAfAH7G/8AycV/wVi/7P8A/hx/66y/4Jp0AegftmfHX42fs3fCzxF8a/h18N/2f/Gfwy+FXw/+JvxS+PXib46ftB/F34Jf8K98CfDfw5F4su9d8LaN8H/2Pv2t/EHxGx4f0/xdqGt6ZBpXhrWNO/sXSLXw7p/jK98QTW2iAH5gfC3/AIKl/tzeNvi7oXwn1X9kD9n/AMP+IPjX8QNT8Ofs+ab8UtW/4LCfsu6Pc/8ACNfBPUPiX4h8Aa78WP2hv+CHnhv4ZeL/AIgNZfC741/EvTLy11L4b/afAlrp/g3T/BWs+IPBmp+MvGwB9v8A7Vf/AAUX8P8A7FGnfByx+O3wd8Qat42+Ifwf8dfFvx8Phj8aP2X/AAx8Gvg9p3wr8Vfs7/Dbx9J4g+PH7anxr/Yo8Lal4fn+K37Tnww8C/DjUm0vRvFXjyfVFvLrwF4VuX/slAD8ofgt/wAHKXgD4s6x4H8AeE/2ef8AhaXxN+O3xA0rVv2cvDnh39sP/gmB8NtY8YfAnxf47+DlnYaD8RfBXiT/AIKF+NvEHwm/a/8ACfh/4x3Pgrwj+zR4mvF8Y/tL+O/htP4j0aw+BNl4k+KvgD9l4A/T7xV/wUm8JaJ+3F4J/ZfsvAf7QEnhL/hn/wDbb+IvxH1m7/YY/bi/ti48d/sueLf2cLbw/B8H/Ey/Be38JfFv4f634S8cfGRJvEXwvsfiTo/jjx3/AMKF8F+AfF3/AAlvxe+GPhP4tgHgH7Gf/BWu++Pfx68bfC34l/D34gWHh/V/tf8AwpS8+G37HP7ZOr6xYeb/AMFJ/wDgpl+x1pX/AA0rcWvgXxpZfs1bPhl+yP8AA/Xde/4aF0/4Hf2D471f43anrX9keH/DuoeGPhiAev8A7eH/AAVL8D/sdeKvHPwiuPBHiCPxtpfwf+HHjaw+M3izx/8AsS/Dz4BeCPFXx+1H9ozwx8EdD8TJ+1p+3l+xFq/xM8QXmr/sxfFfxVrPw2+HfirTtR1LwX4VuRH458MXN8dR0oA8g/ZV/wCCz0f7Xnjv4L/Cv4Sfsp/8Jj8QNe/sDU/2k7X4W/8ABQb/AIJUfHfR/wBnnwJdaONK8YfFLQtP+C37bXjf4tfF74f+A/i1rngLwpqeoSfCH4a6xqXgTxHqHjPTdCk+IFh4Y+CnjgA6D9or/guL+y3+zX+0P8Zv2a/GPg7xBdeNvgb4g8IeGfF2o6z+0/8A8Ex/gLp2paj40+Enw5+M2mXPhPwx+1x+37+zr8Vtf8PweFvif4e0658WRfDeDwrceKrHxN4f0fWdVufDmpvCAd/+xD/wUA8VftX/AB98ceBbz4r/APBKDxj4J0z4P6d4s8PeDv2If+Cieo/tj/H3RfFWh+NG0fxj4m8ceHpf2evgppA+D+s6R4w8C6Xp2s2Nnpuo/D/xpojWOqXPxAtvi9o8XwqAP1foAKACgAoA/B79k/8A5Ms/4Nmv+wF+zr/65O/bEr9/8G/+TdfSw/7MBw5/7FN9Go8rMf8Ae8i/7Gtb/wBUecn7w1+AHqnyh4F/bb/Zv+Iv7TvxD/Y28N+LfF8H7SPwu8GH4j+Lvhz4t+DHxu+Hqj4fHxFF4Tt/HHhfxj8QPh14Y8A/EDwjf+Ipf7L0rxF4A8U+JtJ1iaC+k0u7vINPv5rZ5WnnOVZpnWXxlVy/JM3wmRZtOrGWDxOX5tj6OPxWCwmJy/GrD5jTli8HluJx2GqvC+wrYCWEx1OrLCZjl9bFZ5jVp5TmOU5Tj5xpY7Pcur5tlMKb+s0cdl+FWG+tV6WMwvt8EnhauLpYXE0Z4iFfD46GKwFalDG4HG4fD/V9I0PgD/gpZ/ybr8Of+z//APgk7/69N/Y3oA3f2Tf+S9f8FOv+z4vAH/rtj/gnrX7/AOMn/Juvon/9mA4j/wDYpvpKnlZd/vee/wDY1o/+qPJj7F8UeKPDPgfwz4h8aeNPEOh+EfB/hHQ9V8TeK/FfibVbHQvDnhnw5oVjPqmt6/r+t6pPa6bo+i6Pptrc6hqmqahc29lYWVvPdXU8UETuv8647HYTLcJXx2Orww+Fw8OerVmpO15KEIQhBSqVa1WpKFKhQpQnWr1p06NGnUqzhCXvYPB4vMMXhsBgMNXxmNxtelhcJhMLSqV8TisTXqRpUMPh6FKMqlatWqSjTp06cZTnOSjFNtI+PP2J/wDgpH+xH/wUW0Px74g/Yy+Pnh/412Pwv12w8PePray8PeOPBmveGr/V7We80W5vfC3xH8L+D/E0mg65FZ6imheKbTSLnwxrd3pGuWGlaveX2h6vb2Xszy3HQyrLs8nhpxyvNKuKw+CxbcbSxOCjh54vCV6XN7fBYyhSxeErVMHjaWHxKoYrD11SdGtTnLjxNWjhM3xeR1q9B5jg41J1KdCvSxeGrUqWInhatfAZjhZ1suzTDU68FGeJy3F4uhGFfCVZVFRxuDqV/uCuEs+APiN/ylN/Y3/7MA/4KWf+tFf8EnaAN39k3/kvX/BTr/s+LwB/67Y/4J61+/8AjJ/ybr6J/wD2YDiP/wBim+kqeVl3+957/wBjWj/6o8mPYv2nv2qP2fP2Mfg14n/aB/ae+KPh/wCEPwi8IGzj1rxbr8eqX2691GcW2m6RomgeH9P1jxP4p8QalMWTTvDnhfRdY12/EU72mnTR287R/wA3Zjm+X5T9QWPxHsqmaZlhcoy6hTpV8TisdmGL9pOnh8LhMLSrYmt7HDUcVmOPq06UqGWZRgcxznMauFyrLcfjMP8AQ4PAYvH/AFp4Wl7SGCwdfH4yrKpSo0cNhKHLGVWvXrzp0aftK1ShhMLTlNVcbj8Tg8uwcK+OxmFw9bS/Zy/aR+B/7XHwZ8EftCfs4/EXRPir8HviNp0up+EfGmhR6jaW9/FbXc+n39nfaTrdjpfiDw/rek6laXWma54c8RaTpPiDQ9UtbrTdY0yyvrea3T6DH5bjcsqYenjsPLDyxWBwWZYa8oTjXwWY4ani8JiKdSnKdOcalGrHnipc9CtGrhq8aWJoVqVPyMJjsLjliHhqvtHhMXXwOJhKFSlVoYrDSUalKrRrQp1Yc0JU8Rh5ygqeLwdfDY7CzrYPFYevV9urhOs/B744/wDJsX/BzZ/2HfjX/wCuN/2Ea/f/AKJ//KU30av+z/8Ag3/68Xhw8rPf+RHnP/YqzH/1ErH7w1+AHqnkHx9+Pvwe/Zc+D3j34/fH3x3pPw1+EPwy0U69418aazFqN1aaTYNd22nWkcGnaPZalretatquqXtjo+haBoOmanr2v61f2GjaJpt/ql9aWk1UISxOY5NlNBKpmPEOd5Tw5k2FTSqY/Oc8x1HLstwVJyahB1sTXg62Iqyp4XBYWGIx+Or4bA4XE4mj1YPA4vHzr08HQniJ4bAZlmdeMLXp4DJ8vxOa5liZXa9zCZfg8TiZpXnKNJxpxnUlGEvWoJo7iGG4hbfDPFHNE+GXfHKgeNtrhWXcrA4ZQwzggHIp1Kc6VSdKouWdOcqc43T5Zwk4yV4tp2aaum0902jzcJiqGOwuGxuFqe1wuMw9HFYaryzh7ShiKca1GpyVIwqQ56c4y5akIzje0oxkmlLUHQfAH/BJ3/lFl/wTT/7MA/Y3/wDWdfhzQB9/0AFABQAUAFABQAUAFABQAUAFABQAUAFAHwB+xv8A8nFf8FYv+z//AIcf+usv+CadAHP/APBRSy8aePX/AGOP2a/D3xQ8QfCvwT+15+0/47+APxz1Hwz4B+AXxI1HxZ8Gk/YM/bZ+M2t/D258MftLfBv48/Cm78P+MPFPwe8Had4sh1j4b6tPqnhUaz4fiuLS21m8dgD+UL4I/DH4rfDD4e/H/wDah+H/AOzf8YP2EvjJ+zp/wTg/ay/bL+H3xdX9gj9i/wAAaj8KfjL8Lfhn4cGk/s6/EfxV8U/+DaT9g3SLrxB4/wBI+IXjfTPEB/Zt/aH+JUGreFfht8TtKh1uPw3rWi+Kr8A/qd+Oum/FP4if8FEvhxp/7OnjL4f+D/ib8B/2AP2g/wDhN/F3xS+GniP4reBPh3/w13+1F+x9P8Dv7d+HWgfFj4C+IPiB/wALT8P/ALDH7XOmaZ/whPxSsf8AhXesfDzT9d+In2Oy8ReBPDvxEAPyB/4Ix+EL63/an+E1v4R+PX7IHjHRfg7+yB8SPA194P8AA/xf/bJ+Nn2P4WXXxF8AfD1PD3/BOu6+OH/BXL9sT4f+LP2QLb4gfA/4dX/jf9qPw7+zv8NfDmi/8In8K/2Up/DPh39pqw/an+Dv7FwB9f8Ax98D/Gz4jf8ABTXwPHp/xj+H/wC0R8QPCn7IH/BTDwX8PfgT8PfjT8Xf2BvAnwX0fxN8T/8AgltFN4U+Nnxl+AOq/tHftAXX7QF1+z/+0da+PbvxTqum2ngS+1jw9+zF8W/gp+zx+zf8QNNt/jhqoB8Af8Ew/gZ8YtY/bD8Uf2V8Pvt3/Cl/tH/C2P8AjaP+3Z8Of+EE/sr/AILr/wDBdn+0v+RN+GWof8PKPsf/AAjWv/8AJ63/AArn/hO/7K/4qv7D/wALo+Jf9jgH6v8AjnwPrfxH/bz/AG7Pjx4c/bW+MH7HPwb/AGev2YP2QfgR8aviP8OLX9key8KxfEz4UP8AtYftX/EfS/idqX7Xf7OXxzj0Lw/8Iv2fP2s/gB8SV8f+EB4P+HsunfF/xBpOt+KfFHiTwD4l0b4cAHz/AP8ABM79jz9pHwlonhDXvhb+3J8YPC3wJ8Jftv8A7fuifHH4cXPwx/YWt4Pib4V/ZU/a4+LP7KHwC+E+jab4T/YV8MeKfDXh/W/hT8GPh74Z8TeMtH+Muh6d8Dfg18GvCf7Mn7MPwe8AfDbX/hhrP7KQBz/xZ+PF18LvG/xL+KEH7YH/AAxF+zl+13/wW+8ZfC3xN+1P9t/Zx8O7fAn7Nn/BI/UvgL8Q9C/tT9rT4a/FD4deAPI/b6/YI8RfBv8AtPxd4BsNY8X/APCH/bfh1qF94M+Ing7xX4kAPoD/AIJ6/E2x+Kf7fX7Wv/CtP+Co/wAQP+CiHwS+H/7IH7Gfkf8AFwf2NviB8LPDnxT+Jfxo/bf/AOEl/wCTSvgZ8LPCXhz4geHPCXws8G/8g3+yfEfiPw58QP8Ai7H/AAsDTPDfwG/4VYAft9QAUAFABQB+D37J/wDyZZ/wbNf9gL9nX/1yd+2JX7/4N/8AJuvpYf8AZgOHP/Ypvo1HlZj/AL3kX/Y1rf8Aqjzk/eGvwA9U/mg8DftB/AO6/wCDoX4weH7b43/CC516/wD+CZXgX4JWOiQfErwZNq978Z/Dn7QniXxT4h+EdppsetNeXPxP0LwzDN4i1nwDDC/ivS9Cik1e+0mDT0a4G/h7WpY3hPxnp4KrTxdTM/FTgnM8tp4WccRPMMt4d8NM0wHEGYYGNJzli8DkWOwuJwec4ugqlDLMXhq+HxtShWo1IR87j2lVwvFHg7XxNOph6OA4G4qwmOrV4So0sFiuIeLaOKyDDYupUUYYbEZ5hsbg8Rk9Gs4VMzoYvDVsFGvTr0pT/pfrA9E+AP8AgpZ/ybr8Of8As/8A/wCCTv8A69N/Y3oA3f2Tf+S9f8FOv+z4vAH/AK7Y/wCCetfv/jJ/ybr6J/8A2YDiP/2Kb6Sp5WXf73nv/Y1o/wDqjyY+kvjV4z+D/wAOvhX438e/H7XfAvhj4OeDtFk8S+PfEPxLm0iDwRo2jaPPBfLqOuy66G0wJa30FpLYrKkk8mprZR2Mcl+9sjfzfmmZ5dk2Fhm2Z14YWjluPyrG4XEOE6uIpZxh80wdTIJZZSowqYutnn9uxy5ZBQy+lVzStnby+llVOpmM8LCX0GDwGKzSrUy3CUXiJY/CY/B4mhKVOGHrZZicDiaOb08fOtKGGhlU8qnjFm88bOGAhlbxcswnHBKvJfhX/wAEcf2rf+CfX7Y/7W37f37S/wCyx8Tv+Fi/Hj9o2b4W+LvjB4c0L4WfEjwL4Z+Dfwl+E2kSfC/4FeHfEfiH4g/Dj4eR+Mvi58RLaXxV48+IOoeGZfGGj6Vq63fgOx8Sav4b+H/hXxn48+jyjCYjAcBRy3CQqPL6HFeL4o4hxFWpRhTXFvH+HxGI/sfK8JCrKVPJ8hy7hieGjiFSh/a2e4jP+KqywtfimWUZV5WeY3CY3jXCyqYmNWeB4Ujw/wANR+pVKOJxuU5FicvqcSZ9mOLUq/1mtmOeZxgMuyKGLq4SvheA8j4Nwf8AYuV5vheJY1/6JK806j4A+I3/AClN/Y3/AOzAP+Cln/rRX/BJ2gDd/ZN/5L1/wU6/7Pi8Af8Artj/AIJ61+/+Mn/Juvon/wDZgOI//YpvpKnlZd/vee/9jWj/AOqPJih+3j+0p+y98AvCHgTw7+0X+1FpX7G/iH43a74k+HvwL/aE1bRfCLJ8P/iGvg/VtS1DVLHx18U/h94/+Cnw81B/Cces2aan8V4NK0HW7O7vtA0+6m1a9t4R/L2dUKOczxHCWGzV5Rnef8NZ9Xp1/ZQjTxXDuS47h7G8QZZjMXiPq+Gnl+Y4meRYXFZPRzPLc9zZzoy4YxOFz3AYLM8t+owUlgaUM9xmWvNMny7OMqweIoL2lSdPM84w+a4PK8RRoUIYitDEYehHM69PMa2BxuU5dCnVln1GtlFbFYTF/Kn/AAQS+F3xI+Bv/BO7wr8FPH2leFJdE+FHxk+P3g34OfFTwf4fbwvpP7SnwUtfin4h1HwL+01Hokmsa5JFB8aRqWp+K9G1Vb6XT/FHhmbQ/Fnh+71nw1rujeIdY/Rs+xFfE5dwRUzLL6mQ5/S4D4dy/iHhWo5/8YnmOTwxGTYXI506kYVqGNWRZfk+aZ1hsTChjsPn+Z5tSzPAZPmUMXkuXfKYH6y8/wCPcRUzqlxVhM041x3EmWcY08VQx1TirDcYZVk3GGMxlfF4VywlWeS51n2a8HUaGCqYnA5dg+GcLlWCx+Z4XAUcyxf7OV82ewfg98cf+TYv+Dmz/sO/Gv8A9cb/ALCNfv8A9E//AJSm+jV/2f8A8G//AF4vDh5We/8AIjzn/sVZj/6iVj94a/AD1T+Mv/g631r9s/U/gL8XdEf9kCfx3+xD4S8CfBXUtE/aTt/2ivhf4W0n4b/GnxB8avDq+Ita8Rfs+6il/wDEz4keIk03TvDPwy8A65pX/CPaN4G0r4j/ABH1m5/4Sb+2A/hjk4RniKXij4f5rVyt1uIMq8WuF8NwJh54+P1fiHBvKsFmFbJ8JTV8Dw9m2f5+sfl+YcVZ5HF4jAZPw9hMsyOnkWWcQcX/AOuf1eXxmsJiqOWylmOFr8D8W4jifLkqODjRxblXpYHH4zFYmlKtmOD4Wy7Bwz3AZLl9Slg8wzfNo47MqeYZzw3wriOHP65fgl4g8ceLPg38KPFHxN+Hv/CpfiN4i+HPgvW/Hfwt/wCEs0jx5/wrnxfqnh3Tr3xF4I/4Tfw/DbaF4v8A+EX1aa70X/hJdGt4NL1v7F/aNjFHbXMSD6XiPD4LC5/nWGy3MP7Vy+hmmOpYPMvqlbA/XsPDE1I0sV9TxEpV8L7aCU/YVZOpTvyybaPzLhFyfDGRRcOWFLLcLQw9TmT+tYLD01QwOP5VrQ/tHBU6GP8AqtS9XCfWfqtaUqtGbfp9eKfRHwB/wSd/5RZf8E0/+zAP2N//AFnX4c0Aff8AQAUAFABQAUAFABQAUAFABQAUAFABQAUAflB4T8WftI/s1/tI/t9Xln+wL+0/8fvBPx+/af8AAHxr+G3xJ+Cnj/8AYWsfCupeFbD9hb9jP4D6tp+oaT8eP2zPgd8RNJ8QaT8RPgd46sbq1vvAsenXGnR6Vqml6rqNtqIMIB6BrP7Tnxg8R6j4T1jxD/wR4/bf13V/AXiC58WeBdU1nxb/AMEoNU1HwX4qvPCvibwLeeJvCd9ff8FI57nw54guvBPjTxj4OudZ0eWz1Gfwr4s8TeHpbltI17VLO6AOf+KXxw8b/HHwJrvwt+Nf/BFL9r/4wfDLxR/Zn/CTfDr4pap/wSP+IHgTxF/Ymsaf4i0b+3fCPiz/AIKNav4f1f8AsjxBpGla7pn9oafcfYNY0zT9TtfKvbK2niAOA+KWsaF8cdH13w78a/8AggP+0B8YPD/ij4gaZ8WPE2hfFLQf+CNvxA0fxF8U9E8Caf8AC3RviXrumeLP+ChOr2Wr/EDSPhlpGlfDrTPGWoQXHiOw8CaZp/hG11KLw/ZW2nxAG/8AGv4iXv7SnhXT/Av7Rn/BC39p/wCP3gnSfEFr4s0vwd8a4v8Agj98VPCum+KrHTtV0ex8Taf4e8df8FEte0iz8QWeka7rml2us29nHqNvp2s6rYw3KW2o3kUwB6BbftOfGCz8Vaz46s/+CPH7b9r428R+H/DPhPxD4xtvFv8AwSgg8Va74V8F6j4s1jwd4Z1nxDF/wUjXV9U8P+E9X8e+OtU8M6NfXk+naDqPjTxZfaXbWtz4j1iW8AOf8I/HDxv8P9Y8ReIvAX/BFL9r/wAE+IPF/n/8JZrvhHVP+CR/hvWPFH2nx38Rfilc/wDCRano3/BRqyvdb+0fE34wfFv4iz/2lPc+b47+KPxF8XSbvEHjbxNqGpgHQeGf2nPjB4L0650fwd/wR4/bf8J6ReeIPFniy80vwz4t/wCCUGg6ddeKvHvirWfHXjrxNc2Ol/8ABSO1tp/EHjTxt4j8Q+MfFmsyxNqPiPxVrus+IdYubzV9UvrycAPCf7Tnxg8BeFfDPgXwL/wR4/bf8F+CfBfh/RvCfg7wd4T8W/8ABKDw54V8J+FfDmnW2j+HvDPhnw9o/wDwUjs9I0Hw/oWkWdnpejaNpdna6dpenWttY2NtBbQRRKAc/pnxw8b6Jo/wt8O6N/wRS/a/0jw/8Dv7P/4UpoWmap/wSPsNH+D/APZHgTXfhbpX/CrdMtf+CjUVl8P/AOzPhl4o8TfDrT/+ETg0j7F4E8Ra74RtvK8P6vqGn3AB0Ft+058YLPxVrPjqz/4I8ftv2vjbxH4f8M+E/EPjG28W/wDBKCDxVrvhXwXqPizWPB3hnWfEMX/BSNdX1Tw/4T1fx7461Twzo19eT6doOo+NPFl9pdta3PiPWJbwA6D/AIbI/aK/6RO/t/8A/hxv+CWX/wBMsoAP+GyP2iv+kTv7f/8A4cb/AIJZf/TLKAD/AIbI/aK/6RO/t/8A/hxv+CWX/wBMsoAP+GyP2iv+kTv7f/8A4cb/AIJZf/TLKAPye+HXxF/ai/Z/+DH/AAQ2+APxH/4Js/tf2XxA/Zf8R/Df4W6zHpnxI/4J26ro/wAUPHfwy/4JV/tcfCTxNoXwt1K2/bx/7GD4hafqfxOt/hlo934E8H67C2oQ/EC98J+AvE37/wCDf/JuvpYf9mA4c/8AYpvo1HlZj/veRf8AY1rf+qPOT9Yf+GyP2iv+kTv7f/8A4cb/AIJZf/TLK/AD1Q/4bI/aK/6RO/t//wDhxv8Agll/9MsoAP8Ahsj9or/pE7+3/wD+HG/4JZf/AEyygD5g/a7+L37Wnx++FPhPwL4O/wCCVv7b+m6voX7T/wCxF8a7y48TfFH/AIJh2enSeFf2a/20PgF+0Z460+2m0v8A4KL6zcv4g1bwT8K/EOl+E7WWzh06+8VXmjWOsaroOkXF9rmnAHOfszftX/HnS/jT/wAFDb6x/wCCZP7b/iO58R/theCdZ1jR9G8ff8E24NR8BajB+wD+w34ei8J+LJfEP/BQbQtIvPEF5pGg6X46trnwLqnjTwqvhXxp4Zs7zxNa+NrXxj4O8J/v/jJ/ybr6J/8A2YDiP/2Kb6Sp5WXf73nv/Y1o/wDqjyY+wv8Ahsj9or/pE7+3/wD+HG/4JZf/AEyyvwA9UP8Ahsj9or/pE7+3/wD+HG/4JZf/AEyygA/4bI/aK/6RO/t//wDhxv8Agll/9MsoA+YPFnxe/a0139tD4BftGWf/AASt/bfj8E/Cv9mD9rv4KeIdLufij/wTDTxVeeKvj98Vv2IvHXg7UNGsYv8AgovNpFx4f03SP2a/HVv4mur7XNO1Gz1HVvCcOl6VrNtfaxeaCAc5+zN+1f8AHnS/jT/wUNvrH/gmT+2/4jufEf7YXgnWdY0fRvH3/BNuDUfAWowfsA/sN+HovCfiyXxD/wAFBtC0i88QXmkaDpfjq2ufAuqeNPCq+FfGnhmzvPE1r42tfGPg7wn+/wDjJ/ybr6J//ZgOI/8A2Kb6Sp5WXf73nv8A2NaP/qjyY+wv+GyP2iv+kTv7f/8A4cb/AIJZf/TLK/AD1Q/4bI/aK/6RO/t//wDhxv8Agll/9MsoAP8Ahsj9or/pE7+3/wD+HG/4JZf/AEyygD8nv2kPiL+1F4O/ZY/4Lg6z45/4Js/tf+DvCX7WXhz42/FLwz4x1P4kf8E7dU0f4a+BLX/gmN+zz+zNrOu/FLTvCf7ePiPxbH/YHi34EeNvFmoaZ8NvDPxK1i68CTaFc6Hp+seLb+58H2H7/wDRP/5Sm+jV/wBn/wDBv/14vDh5We/8iPOf+xVmP/qJWP1h/wCGyP2iv+kTv7f/AP4cb/gll/8ATLK/AD1Q/wCGyP2iv+kTv7f/AP4cb/gll/8ATLKAD/hsj9or/pE7+3//AOHG/wCCWX/0yygA/wCGyP2iv+kTv7f/AP4cb/gll/8ATLKAPQP+Ce3wt8d/A79gX9h74KfFLQv+EX+Jvwf/AGQP2afhb8RfDP8Aaej63/wjvjv4f/BfwV4T8XaF/bPh3UNX8P6v/ZHiDSNQ0/8AtPQtV1PR7/7P9q0zUL2ylguZQA/bF+PnxT/Zu8CWfxS8J6N+yBF8MtC+0f8AC2/iL+2L+2R4j/Y38CfD3+09Y8MeHfAX2Pxdpv7MH7RXh/Wf+Es8Qa7c6Fcf8JNqHw//ALO1g+GNM0b/AISu98USQaIAfmB+y5/wVB+Nn/BQj/hBtP8A2ffj9/wTA+B3jPxb/wAJNqehfC/wb4u+Lv8AwVT+KfiPwJYf8JDe6Z8Uviz4B+Fuv/8ABPnxB+xB8P28P+GtF1XTdQ+P9r4i1jVfEfxo+GnwU+Kuhfs4ftGxaf8ABvx+AfX/APwUh/bv+Kf7Anhzwd8UP+Fe/sgar8EvFfxA+CXwd/4TX9ov9uPxH+yv4jtvin8aPinb+APstj4c/wCGSfjR4S1X4f8Aw58JX3/C5/iJ4w/4WZY+I9C+Fng34u+KP+FezaZ8OvtniEA5/U/+CgfxCs/hTp+qajo37MEPxkvfjB/wTIurPQfgb8bPiZ+1P8Gtd/ZH/wCCin7aHw8/Zk8C/GvQPjLqnwI/Za0jV/EHjLSLT9oO88CaV4UsfGeiaFP4F8EeOvEOoeIPDfjKx8M3gB+lHxH+IvhD4TeC9c+IHjrUbvTfDXh+G2e7fTND1/xVrl/eahfW2laNoPhjwj4S0vXPF3jLxb4k1q+0/wAP+E/BnhHQ9c8WeLfEepaZ4d8M6Nqut6lY2FxlVrRpOlFwr1qteo6dHD4TC4nG4qtKFKriKzo4TB0q+Jqww2EoYnHYyrClKngsvwuLzDFzo4LCYmvS6MNhquLqqjSdCD5KlSVTFYrDYLDUaVGnKrVrYjGYytQwmGo0qcJTqVsRWpUoRTcpo4D9n79pX4NftQ+E9c8ZfBjxPqmuaf4U8Y658PPGmh+KvA3j/wCFfxC8AePPDi2k2seDPiL8Kvix4W8EfE74eeJ7ax1HStYi0Pxr4R0HUb3w/rOh+I7C3utC1vSdRvO2phqkMLgMcp4evgczpYurgMbg8XhcfhMT/Z+Z47JMyowxOCrYigsXledZZmWT5rgpzjjMrzbL8bluYUMNjcLXoQ4nVjHF4rAVI1qGNwdPBVsRhcTh6+Frxw2Z4Olj8uxkKeIp0pV8Dj8HWhXwWOoKpg8VFVFQr1J0a0afu1c5qFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHw7+1l/yXr/gmL/2fF4//wDXbH/BQqv3/wAG/wDk3X0sP+zAcOf+xTfRqPKzH/e8i/7Gtb/1R5yfcVfgB6oUAFABQB8O/sm/8l6/4Kdf9nxeAP8A12x/wT1r9/8AGT/k3X0T/wDswHEf/sU30lTysu/3vPf+xrR/9UeTH3FX4AeqFABQAUAfDv7Jv/Jev+CnX/Z8XgD/ANdsf8E9a/f/ABk/5N19E/8A7MBxH/7FN9JU8rLv97z3/sa0f/VHkx9xV+AHqhQAUAfDv/BTr/lGx/wUK/7Md/ay/wDVC+Pq/f8A6J//AClN9Gr/ALP/AODf/rxeHDys9/5Eec/9irMf/USsfcVfgB6oUAFABQAUAfEH7b3ijxofCvgf4U/BD4ufGD4fftLfEfxBqOofCPwp8Cz8AovFXjjTvCmnLp3jPVfij4i/aJ/Z4/ag8E/Cf9mD4dXPjPwh4k+Nnxrt/hXqHirw1qMvw6+HnwztfiP8afiz8LP2fPjYAfgD8JPCet/ss6V+0x8X/hr+31+0/dfsX/sk/tPt8Rrv9oD4Y+AP2R/jT4V8cT+NP+CaP7Hvx+8O/tTft6fDv9mP9jPwX+0H/wAFHfg/8XZP2i/iNaftG/G/wv8AtAwfGVNO0j4AfGm/vrbUfDnjb9tz9nEA/X79t7wp8ZbX4meB/G/wd+L3h/xX+2GviDUZv+Cf37OXi/4VweLPgF4W062+Hq/D/wDaB+K/7RXh+18Z6N42Tw/pNt8VNQm+I37ZvhT4gfC3xV8B/BeqfBn9m39n7wL498eftDfGj9nP/gpWAfEHx7/Zv0f9kjXfAvwk0HWN/wAMtE+H/wDwbL/s3/s/3PjXxv4Evfin8RtH/YX/AOCyUPhn4raxeeE9Fk0TxBqP/CvfD/7SP7NEnj/xvYeAtA8CHxH8YPDmm6TJb3t3Lo2ngH7k/tH/ALQXwH/ZZ+EviP47/tHePvB3w0+GHgBYdRvvFnjTUdN06zttVuBJY6Tp2jPqMsRvPFGtXFydJ0HS9OL6pql5eCxs43aZ1PHisbSwk8DT92pjsxx1LK8owaxGCwlfMMzxtOtTpYLD4nMcVgcBhVPDrE1cbj8xxuByrK8qo5hmud5hl+S4HMcdht6dCVbDZjKp7RZdg8E8yziqsLjcdSw+X5XicNmEcTWwOXYXHY/Hzw+Pw2Bq5dgMBgcdmmPzmGW4PJcDjc6r5dha34x/En9p79nHw9+wv+3x+178Ff8Agpd8Jf2dPH/xD+JfwT+J/wAdP2zPgj8PvCP7f/gP9mnW9c8QfBj4JfDn4R/8IF8OpfH/AIF+I3idfhZ4Q8LfCnxZZWWp6rq+ka/4+v8A43SadoHhbV/CEFv7McJPLchy3K8PGnVy3BZrxFWr5rhqGKo4LPOKc4xdDO+I8fhKmNwuBxGJw+Go5hk2T5bVq4HBYqPDuV5As1wdDOpZi6nBVzB5nms8XXqVKVSnk+U5Xk+SYqrltXMuHuFstlja+EwmYLK5VoQq5vxPmvF/FVR4nGZrDD5rn+dcPZLn+d5Dwzl9bD/0I1xHQFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHw7+1l/yXr/gmL/2fF4//wDXbH/BQqv3/wAG/wDk3X0sP+zAcOf+xTfRqPKzH/e8i/7Gtb/1R5yfcVfgB6oUAFABQB8O/sm/8l6/4Kdf9nxeAP8A12x/wT1r9/8AGT/k3X0T/wDswHEf/sU30lTysu/3vPf+xrR/9UeTH3FX4AeqFABQAUAfDv7Jv/Jev+CnX/Z8XgD/ANdsf8E9a/f/ABk/5N19E/8A7MBxH/7FN9JU8rLv97z3/sa0f/VHkx9xV+AHqhQAUAfDv/BTr/lGx/wUK/7Md/ay/wDVC+Pq/f8A6J//AClN9Gr/ALP/AODf/rxeHDys9/5Eec/9irMf/USsfcVfgB6oUAFABQAUAFAHP+GfCfhXwXp1zo/g7wz4f8J6ReeIPFniy80vwzo2naDp114q8e+KtZ8deOvE1zY6XbWttP4g8aeNvEfiHxj4s1mWJtR8R+Ktd1nxDrFzeavql9eTgHP+HfhP8LPCHjv4i/FLwn8NPh/4X+Jvxg/4RH/hbfxF8O+DfDmieO/ij/wr/R5/DvgL/hYvi7TdNtvEHjb/AIQnw/c3OheEf+Em1DU/+Eb0e4n0zRvsVlLJAwB0Gs+E/CviPUfCeseIfDPh/XdX8BeILnxZ4F1TWdG07VNR8F+Krzwr4m8C3nibwnfX1tPc+HPEF14J8aeMfB1zrOjy2eoz+FfFnibw9LctpGvapZ3QB0FABQAUAFABQAUAFABQAUAFAHwB4g/bo8W/8Ld+Ovwk+En7CX7X/wC0R/wzv8QPDXwt+IXxC+FviL9h3wz4E/4TvxN8E/hJ8fodC0KH4/fto/BL4gan/Znw/wDjb4Dk1PU5PAVpo/8AbF3qGm6bqGpf2bcXFAB/w2R+0V/0id/b/wD/AA43/BLL/wCmWUAH/DZH7RX/AEid/b//APDjf8Esv/pllAB/w2R+0V/0id/b/wD/AA43/BLL/wCmWUAH/DZH7RX/AEid/b//APDjf8Esv/pllAB/w2R+0V/0id/b/wD/AA43/BLL/wCmWUAH/DZH7RX/AEid/b//APDjf8Esv/pllAB/w2R+0V/0id/b/wD/AA43/BLL/wCmWUAH/DZH7RX/AEid/b//APDjf8Esv/pllAB/w2R+0V/0id/b/wD/AA43/BLL/wCmWUAH/DZH7RX/AEid/b//APDjf8Esv/pllAB/w2R+0V/0id/b/wD/AA43/BLL/wCmWUAH/DZH7RX/AEid/b//APDjf8Esv/pllAB/w2R+0V/0id/b/wD/AA43/BLL/wCmWUAH/DZH7RX/AEid/b//APDjf8Esv/pllAH5+/ED/goD4+/aF1b/AIJT/Hj4d/8ABOb9t+X4d+Pf2gpPjX8Ir7WfFX/BPTS9R+L/AIV+I/8AwTf/AG07zwrp/hPSz+3tPc+HPEF14J8aSfEm5tfiuPhxp1l4V8J+JtJuNVX4iS+FfAvij9/8G/8Ak3X0sP8AswHDn/sU30ajysx/3vIv+xrW/wDVHnJ+gX/DZH7RX/SJ39v/AP8ADjf8Esv/AKZZX4AeqH/DZH7RX/SJ39v/AP8ADjf8Esv/AKZZQAf8NkftFf8ASJ39v/8A8ON/wSy/+mWUAef/ABL/AOCjXxP+D/hzTfFnxF/4Jdft/wDh3w/q/wAQPhP8LdP1D/hM/wDgmVq/2jx38cfin4N+Cnwt0L7LoX/BRzU72L/hKPib8QPCPhn+057aLR9E/tf+2fEWoaR4fsNT1WyAPn39mb9q/wCPOl/Gn/gobfWP/BMn9t/xHc+I/wBsLwTrOsaPo3j7/gm3BqPgLUYP2Af2G/D0XhPxZL4h/wCCg2haReeILzSNB0vx1bXPgXVPGnhVfCvjTwzZ3nia18bWvjHwd4T/AH/xk/5N19E//swHEf8A7FN9JU8rLv8Ae89/7GtH/wBUeTH2F/w2R+0V/wBInf2//wDw43/BLL/6ZZX4AeqH/DZH7RX/AEid/b//APDjf8Esv/pllAB/w2R+0V/0id/b/wD/AA43/BLL/wCmWUAef6l/wUa+J+kfFPwb8FNQ/wCCXX7f9v8AE34gfD/4l/FLwj4Z/wCEz/4JlS/2v4E+D/iP4T+E/iLrv9swf8FHJfD9h/wjviD44/C3T/7M1PVbLWNX/wCEo+1aFp+p2WieIrnSAD59/Zm/av8Ajzpfxp/4KG31j/wTJ/bf8R3PiP8AbC8E6zrGj6N4+/4Jtwaj4C1GD9gH9hvw9F4T8WS+If8AgoNoWkXniC80jQdL8dW1z4F1Txp4VXwr408M2d54mtfG1r4x8HeE/wB/8ZP+TdfRP/7MBxH/AOxTfSVPKy7/AHvPf+xrR/8AVHkx9hf8NkftFf8ASJ39v/8A8ON/wSy/+mWV+AHqh/w2R+0V/wBInf2//wDw43/BLL/6ZZQAf8NkftFf9Inf2/8A/wAON/wSy/8ApllAH5+/tt/8FAfH3xj/AGJP+Cnvwy0n/gnN+2/4YufhX+z7+0P8FPjN4q8WeKv+CeieFfhH4q8Vfsh6T8XU1DxMPDH7e3ifxT4l8P6J8KfjP8PvHus3Xws8L/EPUW07VrnQdF0rWfG2l6j4Vtv3/wCif/ylN9Gr/s//AIN/+vF4cPKz3/kR5z/2Ksx/9RKx+gX/AA2R+0V/0id/b/8A/Djf8Esv/pllfgB6of8ADZH7RX/SJ39v/wD8ON/wSy/+mWUAH/DZH7RX/SJ39v8A/wDDjf8ABLL/AOmWUAH/AA2R+0V/0id/b/8A/Djf8Esv/pllAH0/+z18a/Cv7SnwC+B/7RngXT/EGk+Cfj98H/hp8a/B2l+LLXTrHxVpvhX4qeC9F8deHtP8TWOj6rr2kWfiCz0jXbO31m10vXNZ0631GO5hsdV1G2SK8mAPYKACgAoAKACgAoAKACgAoAKACgAoAKACgD4A/Y3/AOTiv+CsX/Z//wAOP/XWX/BNOgA/4KgeO/2jvhr+xZ8RfGH7J7fECP422HxA/Zt0/Srn4W+A7r4leO7DwJ4j/ad+Dnhn416noXhPT/2e/wBrLU5v7L+CWsfETUdT13Sf2ZvjvrHg7R7XUPGOj/C3xjqegWujXQB+QP7Hn7SH/BTXxV+2n+yh4P8AHviv9r/xV8EvFXxA+Jen/He2+KXwF+J+neBNO8Cad+zF8fPE3hbU9d8WeP8A/g3Q/wCCVumeCcfG3QfhJp2ma7pv7TOo6xqOsajp/g6P4W+KtM8VaprPhUA/T79p/wDa2/aA+DX7WP7KHg3wz+zX+0BqvwS8d/tAaN+z38R/HNtqH7IGsfDb4kaP8aPhtqWueH/Hnwl8Er+0Naftj6l8QP2d/iR4Z0bW/ia1t8J7HwJ4R/ZO0f8AbP8AjD4s8CeO9M+HPwx+JPgoA+QNf/4Kf/t9a94E8eeNfhJ+yt+wBrvh/wCHX7X/AOw3+y9c+P8ATP8AgoX8aPin4E+In/DZGsfsReI/Cfiz4W3vhn/gn74Pstf+H/ib4Zftr+ArLT/inJ4jH/CG6wNd8f6b8MfjR4f8KaN4K+J4B9f/ALSH7ZPxF+Df7X+j+DfB/wAPPiB8WPhl8MP2f/BF58bfhp4L8QfsseBNY8SfFP8Abg/aAj+E37EniPwp4y/ad+NPwH8P3n/CPeIP2Wv2mfhP4p8Fad8S9F8R+JPHf7R37PGm+DvAHxdvdQ1zUvg2AcB+z7+2X+27pmsfAD9n/wCPv7AX7QFz8TfF/wAQPirYeK/ih4v+Of8AwTU8N6xF+yx4J8d614X8GftL6v8ADP4V/tfeIPEHxI+IHhrw/wCM/wBlyL9rnQfg98KfBPw68L+O/il491r4O6S1lbfCH4MfEAA+H/8Agrh/wWS+N/7Dfx98Z+Avgv8AEb9iB/BPwv8Ag/8AB7xt8QfDXxC8Tfs1ePPj7pfirWfGnjbXfjlodx8IPGv/AAVc/Yh+NMfiDwt+zTH8Lvij8Afht4J+AvxU1H9onxp4xh8CQeOfANtq1jr+ngHAfsBf8Fd/2kf2iv20PhH4P/aM/a6/4JwfDz4N6j4f+PnhO/8Ahn4G8e/sLSeKvjd8TPE/xW+GXhD9kHwz8Nrj4R/8FhP23vitJ8YPFPhaTXPFuuaNb+BNL+HvhHUb7xt8D4bb4/eJPFXwm+N/w1AP6naACgAoAKACgAoA/B79k/8A5Ms/4Nmv+wF+zr/65O/bEr9/8G/+TdfSw/7MBw5/7FN9Go8rMf8Ae8i/7Gtb/wBUecn7w1+AHqnx74W/am8Q+IP23vid+x/qfwQ8SeEdE8BfAPwT8b/Dvxp1zxn4KvdM+KCeKvGWteENT0vwn4F8M6hr/iDRtD8M3WlpaXGv+Pr3wjr+qa9HrFnp/gRvDdlo3jHxJlk9aGa4bi2rN/U8Xwrm/CuXzy6alWr4rBcVYTi+vgs2qVqa+p4alUqcH4yOFwlHE47F1MPXhXzGGU14xwVXTNIRy6pwpThN4yPEuC4wxc8RTj7LDZfW4Tr8E0Z5d++lHFYrHVo8ZU8Ri5xwlDLsJRo4JYLMM4r4zH0ck+wq1Mz4A/4KWf8AJuvw5/7P/wD+CTv/AK9N/Y3oA3f2Tf8AkvX/AAU6/wCz4vAH/rtj/gnrX7/4yf8AJuvon/8AZgOI/wD2Kb6Sp5WXf73nv/Y1o/8AqjyY+xfE+rX2g+HNc1rS/D2q+LdT0vSr++03wroUulwaz4k1C2tpJbLQtLudc1DSNDtL7VrpYrG2vNb1bStGtJZ1udV1OwsIri7h/nuq6yio4eFKdepVoUKX1itPD4WnPEVqdBYjG16VDF4ijgML7T6zjquFwWPxlPCUq08Hl+PxSo4Ov7VCFKdWKr1vYUFzTr1lTlWlSo04upVnToQaqYiqqcZexw1L99iavJQpJ1KkU/lv9l/9of4qfF7xb8evhp8aPhD4B+F/xC+A3ijwZoer3Pwd+NupftCfCrWYPHXg208ZabpKeP8AXfg98CPEOhfE/wAO6fc29349+GWufDm1uvDfh3xL8OPFllr2vaJ8QdKmt+6nRpV8mwmb0ZYmKq5vnWSVKeKw9GhRxWIySjlNXFZpkGIpYzEzzfhp4nNqvDyzbE4bKcTDjDhnjTh+plcY8PwzDMeTFVamGz2eUSwuJjQqcNZLxTgcZiKfsalXA55nnF+S0MFjMPF1sPhs0w/+qUsxxNDB5hmeFWAzjKqtLHVXWko/YNcxsfAHxG/5Sm/sb/8AZgH/AAUs/wDWiv8Agk7QBu/sm/8AJev+CnX/AGfF4A/9dsf8E9a/f/GT/k3X0T/+zAcR/wDsU30lTysu/wB7z3/sa0f/AFR5MfWnjvxx4d+HHhPWPGfiq8az0fR4rcMkETXWo6pqWoXlvpeheHdB06LN1rfifxPrl7p3h3wt4e09J9V8ReItU0zQ9JtrrUtQtbeX+e6tSpFU4UMNWxuLxFWnhsFgcPLDU6+NxdZ8tHDUquMxGEwOH55a1cZmGLweW4DDxrY7M8bgsvw2JxdH26FJVZy56tPDUKNGvi8ZjK0a88PgMBg6FTFY/McX9Wo4jERwWX4OjXxuMqUqFadLDUKtSNObjyvxn9kP9oO7/an/AGffBPxy1D4dar8Jb/xdqPj/AE29+HOu+IdE8Va34Uu/AnxJ8X/Dy507WNd8MtL4bvdVebwo93qC+H73V9Es7u5msNK1/wARWFrb65qHdWoU6eEyDF0sVQxlLPeD+COLadbDRxMcNGnxnwfkfFkMPh5YyhhMXWoYOOdLB0sVisDl+JxdOhHFV8ty6rWlgcP5GXY+eOlncKmEq4Kpk3F/HHCk6NepQqV5T4M4yz3hGWKrfVqlbDUquOlkjxtTC4fE42hg54h4Slj8wp0Y42v9KVzHon4PfHH/AJNi/wCDmz/sO/Gv/wBcb/sI1+//AET/APlKb6NX/Z//AAb/APXi8OHlZ7/yI85/7FWY/wDqJWP3hr8APVPhX9sz9qP45/sxeDfG3xa8A/szaP8AGb4O/BDwHf8AxU+PfiHWfjcvwn8Z2ngTQYrvWvFsXwD8GT/C7x1o3xi8ceEPBOj614q1nQPHfjv4C+FryWbwz4a8M+PvEPiDUvEtn4M54YvD0MVhp5s6+EyjEZ5k2QSxWAw1bNs2oVs4x+VZfHN5ZJSjh3icgwVbOaE8VPL8wxvEdeGW57SyvhnMcZhsowme+tl+T4jOcRgsnyedPE8TZtdZPl2JksJlWKr1Xi8NluAxeexeJjl2ZZtmmFWAw2Hq5fUoYKjXoZrneLyrLMTgcTi/tjRtWs9e0fSdd04zNp+tabY6tYm5t57O4NnqNrFeWxntLlIrm1mMEyGW3uI454H3RSokiso9LHYOvl2OxmX4lU1icBisRg8QqVWnXpKvha06FVU61KU6Van7SEuSrTnKnUjacJSi0383lmYUM2y3L81w0ascNmeBwmYYeNeCp1o0MZh6eJpRrU1KShVVOpFVIKUlGacVJ2u9KuU7j4A/4JO/8osv+Caf/ZgH7G//AKzr8OaAPv8AoAKACgAoAKACgAoAKACgAoAKACgAoAKAPgD9jf8A5OK/4Kxf9n//AA4/9dZf8E06APzA/wCC6P7Mng79qD4i/si+C/hv+yX8QPi3+1bafEDXdWv/AI0+AP2BPgT+0R/wh/wJt/2WP23tK8HaD41+Mf7bng3w/wDsJ+IPh/4f/aS8QfD/AMV+I/2aPi9+0P4H8Y6r/aVn4p+GFh4Z+Ket/DPxxCAfhD8J/wBk74X/ABP8A6vnw5+xB8B/GPwx+MH/AAUV8B/tbaX4H/Yo/wCCdXxqg/Yu1GL/AIKF6rpnwX/aQ/bW8I/ED9jn9tG5/Ze+D/ww8E+Jfjx4Btf2YNJ/bU+IvhXxL8Gvgr+zl4++G37Rfwx/ZO8Dft0ftcfsvAH7/f8ABQH9lb9i/wAe3v8AwTm+Ieo/EXw/o/7O3jH4weK/Cfw7+Jnhjxd8KdD+AX7Nn7F+gf8ABH79vbxfH4Z+Alvb+HW/Z80v9mDxZH4C8P8AxW+M+jfEjw38TPhT+0n4L03w58K/2lLb4vfsk/Dr4UfBDwEAdB8TYNYuPh1rXiHxF4R+IHhL4m/8FEv+Cv8A+wp+078H/g3q/wAOvHcPiOy+EX7LH7U//BNz4Xw3et3t34dsZvDvxA8Yfsi/siT/ALeXin4J/EXRfh18bPg/8LL746aB4u+Ht3ZfsgfHrx9ogB0Hj7QP2DPgb+2h/wAFOfCX7VHjf4P/AAW+BP7Xv7EH7D3hP44eJfjv8ck+GMHxm8VfHb4rf8FfNC8W+GdU+L/jvx3oXim88QXnwp0K58D+ANG0bxna6j8NPg18O/C3w8+FFt4Q+G3wp8H6B4XAPP8A9gP9vD9mr4wftD6dq37Sf/BQ39iD4n/tR/A34P8AwA/4J/8AwuXwB+0d8EJtO+P/AMZfi38JP2a/jt+2J8ffgRa+Hb/4eSfETw/+09+0Hq/wd+A/hbwBY/DbUoPh/wCKv2MtUHw3ufCmufGL4o/DDw+AfIH/AAXN/bK+AXxH+PvwF/Zw8IfthfB/xH4Jtfg/+3p8PP2uPgf4b/bF8F+C/CsXiqDxp+yP4E0z4fftG+EtM/4K6/8ABJnSLjxAmkX3xv8ACNh8PfiZ8dfGmoy6dP8AFXTLf4B+I7a18XeMPhwAdB/wRe/b2+Flr+1P+0/8KfjT+3P8P9R/4T74f/sSaR+zx4A+KH7b3hz4r/8ACY/FPxV8Rf2wfDnjTRPgxZeK/wDgr9/wVy/tb4geIdvwc0XxR4W8D/tAeFfEd/v+GcWq/AvQ/wC0fC3jX4lAH9XtABQAUAFABQAUAfkj+wj+zt8Lf2jP+CTf/BKHSPiha+N8fDv9jf8AY1+I3gbXfhx8Xfi78D/GvhTxmP2Q9L+HkutaH8Qfgj45+Hnjqwa88EfELxr4X1Kwh8RLpmqaP4j1G01GyukePy/v/D7xN4u8MMbnmN4SrZB/xk2QPhfiDL+KOC+C+P8AIc4yL+3Mj4lhgMw4b4+4f4m4exKoZ/w1kObYXEVMseLwmOyzDVsLXoyjLm5cXgsPjY0o11V/c1fbUp0MTicLVp1fZVaPNCthatGrG9KtVpySnyyjOSkmfoJ8G/gF4G+BNtr1p4J1341a5F4kn0+41B/jL+0n+0V+0Xc28mmx3cVsug3v7QfxT+J954VgkW8mOoWvhefR7bVpEtJdVhvJbCxe3jjnxG4g8QquXVs/y/gPL55XTxNLDR4H8LPDHwxpVY4qVGdV5jQ8NeEOE6GcVIuhBYatm1PG1cHGVaGDnQhiMRGqYbB0sIpqlPFTU3Fy+s47G41rlvbkeMxFd01q+ZU3FS0ck2lb5G07QPjYv/BVTxN8Rpv2dPibb/Ai7/ZC8M/Bay/aAk8V/s/v4Au/GujfEHxD8U7qOPwlB8bZvjrFpb23iGDwhBf3Xwetw/i6x1Bnhj8Iix8WX35xw1h50JeJuIxsoYB59iPDetk9Cu5Va2OjwWvEHLsyjF4KOLoYeWLhxvgMxy365Ww0amByzN44yWCzCGWYDM+zP5KS8OI4O+Yf2evEpZw8N+6WTf62/wCoE8r+ufX3gnieX/iHmMhi/wCyFmfsZcQcO8ntYf6wSyD9I66yT4A/4KWf8m6/Dn/s/wD/AOCTv/r039jegDu/Gn7CX7P/AI4+Ifj74pXd7+0Z4R8YfFHW9H8S/ECT4P8A7af7ZnwH8N+KPEmg+B/CPw10zxFqHgT4J/Hz4f8AgQa9F4E8BeDfDNzrNt4bg1LUdN8N6Uuo3N3LbLKf27IvpC+JHD/DXDnCNGh4Y51knCOAx2VcNx428CfAzxDzTKcrzHiDOuKsXlmG4h498OeJOIXl0+IeIs8zWlgauaVMLhsVmmMeFpUYVXA82rlODq1q2IbxtOpiJRnW+rZnmeEhUnClToRnKjhcZRpc/sqNKm5KClKMI8zdj2yz0OH4F/CG40rwB4X+LHxaXwH4f1e88O+Drz4n33xL+L3jm6jkvNVi8PW/xQ/aY+KlpJrniDVLu4ew0jUfil8W9L0exjezsLvxHo+iWUH2T8n4r4lzLiXOMdxHmGX5T/aOZ4rB/WcHwpw1wnwXk9BSeFwMq+B4a4ZwHDXC+VYXC4eP13GUMpy3CzxCpYrEUcLjczxHs8T6WDw1KEVQ+sexp06VecauMq4zFSnKnSq1oUXWccXiZ1cTUjHDUJVW6UKtWl9YrYfCxqVqXxJ+wz+zpL8M/jD+0h8cPCv7N+sfsSfCz496T8LZh+ypqWt/Cnzh8bPB+p/E2P4p/tCaz4F/Z7+IvxY/Z+8GeI/i14Z1z4WeHrzUPh9451DxJ45t/hzD4g+J1ta6+mnwx8eXww+U8I4PhulVpVcPgs9xuL4ey+h9Ylg+EOFP7D4ey3B8LZbHE4fDxyvCTzvL8/ztcOZQ8TwxllDMMFmWWVqGd59xTgMJOYYupm2bYXH1cvnQx2CwWaYbN+IK2IpPHcYYnNsxw2aYWWOw2GdX61T4ZcMw+p8RZxiZcQZrjOKc8ymvl+ByThrIMx4h/TOuUo+APiN/ylN/Y3/7MA/4KWf+tFf8EnaAPV/iV+wt+xJ8ZvGer/Ef4wfsdfsr/Ff4h+IF05de8efEr9nv4SeOvGetrpGmWeiaSur+KPFHhHVNc1JdM0bTtP0jThe30wstMsLOwthFaWsESfr3Cv0g/HvgXIsFwvwT43+L3B3DOWvEvLuHeFfErjPh7IsA8bi6+PxjwWUZRnWDy/CvF47FYnG4l0MPTdfF4iviavPWq1Jy8+vlOV4qrKvicty/EVp8vPWr4PD1qsuWKjHmqVKcpy5YpRjdu0UktEkO+Nn7L7fFHw78JfDXw2+Onxb/AGUbD4L6pFqPg2L9nfw1+zdJpyWtj4Wu/B+haDceFfj3+z98dvA9poXhfRb25i8MWfh/wvoc2izGCW0ulFlYpbfkmPxOaZrxHW4ozLOs0zDNcXRz5ZlWzCtRzGpmmYcRYvAYrMM+xuNx9DE5q8/lHC47Bf2rh8ww+IxOXcQ8SYHMHjaGbVox9ROisuq5Z9VoOhVxWW4jmTr05QhlUq1bDYN0aVeng6+BWNlgsz+r4vC4hUc0ybJsfhJYbE4CnUfk3/BM79nv4vfsy/sr6T8Mvjb49+IPjjxuPiX8a/E7R/EM/BKa+8M6H4q+LfjLWtB07SLz4FeA/Avhm703xFpd3bfEO8GsJr2v2HiPxpruk/2jo+hafofgvwt0SxFKeQ8B4KOEw+FxOS+GnhvkWZwoSxcnQzXJ+B8gy/Msoc8RicTSrYfhfGYetwrlmLwzn9eynJcDjsbmGfZliMbxBmnj4HDV6OY8W4mpzQo5lx94jZrgoJ0pU8ZgM38Q+K84y7iKdlKtRzDinLcxwee5pg5Tw+EwGNxlTCYDJsgo0XlWH+/65D1D85v2W/DXhzxn8Z/+CwPg/wAYaBonivwl4r/bl8G+GvFPhbxLpVjrvhzxL4c13/glH/wTb0vW9A1/RNUgutM1nRNZ0y6utO1XStRtbmx1CxuZ7S7gmt5pI278qzXM8izTLc7yTMsfk+c5Pj8HmuUZvlWMxGX5plWZ5fiKeLwGZZbj8JUo4vA4/A4ujSxWDxmFq0sRhsRSp1qNSFSEZKZwhVhOnUhGpTqRlCpTnFThOE04zhOMk4yjKLcZRkmpJtNNM93+GP7D37FfwT8Yaf8AEP4M/sgfsu/CPx/pMF/a6X45+GP7P/wn8BeMNNttVs5tO1S30/xN4V8JaTrVnBqWn3FxYX8Nvexx3lnPNa3CyQSujfpnFnj/AOO/HuSYnhnjnxr8W+NOG8ZUw9bF8P8AFniRxjxHkmKq4OvDFYSricqzjOcZgK9TC4mlTxGHnVw8pUK9OFak41IRkuKhlWV4WrGthstwGGrRTUatDB4ejVipJxko1KdOMkpRbTSeqbT0Z4J+2F47+O2p+OvD3wc0j9gr9oX9pD9nK70q38UfFPxb8KvHf7Gel6f491Ox1G2udA+DU3hf4+ftbfAfxN/wiFxeW41r4n6jfaLdaN4k0jT7L4cR6R4m8OeM/Ft7on47ga9eGZV8fUw9ehV4fxWW43hhOeGjTx+f0LY/DcQVsVRrYnEZdhuFcXTwlbJMPDBQzTG8VQo548VlOW8JYXBce92Y0FWy55bTeBxWF4iyzO8q4mdeFarUwmRZjh55Ri8hw2Dr4VYPFYnijLsVmOHzTNJ4ipRyPIpfVcrw2L4hz+nnfAH6B+G7zW9R8O6FqHiXRIPDXiK+0fTbzXfDttq0evW+g6xc2cM2paNDrkNpYQ6xHpl481kmpw2VpFfCEXMVvEkqoO/F0qNDFYihh8VDG0KNerSo4ylTrUaWLp05yjDE0qWJp0sRTpVopVKcMRSpV4wlFVqVKpzU450Kk61KFWdCthZVFzrD4h0HiaMJNunTxP1WvisLHFRg4rEwwuLxmGp1/aU8PjMXRjDE1dquc1PgD/gk7/yiy/4Jp/8AZgH7G/8A6zr8OaAPv+gAoAKACgAoAKACgAoAKACgAoAKACgAoA/GH4Q/H34rfCv9rT/gql4e8C/sRftP/tKaReftv/C7Wbjx18FPFn7F+g+FdJ1G4/4Jh/8ABOixm8J6hZ/tGftd/AHxtJ4gsbbTrPWLq50vwdqXhV9O13SorHxNeavDrml6MAfT/wDw2R+0V/0id/b/AP8Aw43/AASy/wDpllAB/wANkftFf9Inf2//APw43/BLL/6ZZQAf8NkftFf9Inf2/wD/AMON/wAEsv8A6ZZQAf8ADZH7RX/SJ39v/wD8ON/wSy/+mWUAH/DZH7RX/SJ39v8A/wDDjf8ABLL/AOmWUAH/AA2R+0V/0id/b/8A/Djf8Esv/pllAB/w2R+0V/0id/b/AP8Aw43/AASy/wDpllAB/wANkftFf9Inf2//APw43/BLL/6ZZQAf8NkftFf9Inf2/wD/AMON/wAEsv8A6ZZQAf8ADZH7RX/SJ39v/wD8ON/wSy/+mWUAH/DZH7RX/SJ39v8A/wDDjf8ABLL/AOmWUAH/AA2R+0V/0id/b/8A/Djf8Esv/pllAB/w2R+0V/0id/b/AP8Aw43/AASy/wDpllAB/wANkftFf9Inf2//APw43/BLL/6ZZQB8Qf8ABMn9q/48+HP+Cbf/AAT58PaP/wAEyf23/HukaD+xB+yho2l+OvCfj7/gm3Z+FfGmnaX8BvANjY+LPDNn46/4KDeC/G1r4f8AEdtBFrGjW3jHwd4T8VQadeW0XiHwzoWrreaXagH2/wD8NkftFf8ASJ39v/8A8ON/wSy/+mWUAH/DZH7RX/SJ39v/AP8ADjf8Esv/AKZZQAf8NkftFf8ASJ39v/8A8ON/wSy/+mWUAfEH/BQb9q/48698BvANjqn/AATJ/bf8F20H7b//AATJ1mLWPE3j7/gm3dadeaj4c/4KSfsoeIdH8J20Xg7/AIKDeLNXXxB491fS7HwL4TubzS7XwrZ+KvEejXnjrxN4L8EweIfGOhAH2/8A8NkftFf9Inf2/wD/AMON/wAEsv8A6ZZQAf8ADZH7RX/SJ39v/wD8ON/wSy/+mWUAH/DZH7RX/SJ39v8A/wDDjf8ABLL/AOmWUAH/AA2R+0V/0id/b/8A/Djf8Esv/pllAHxB4+/av+PM/wDwUk/ZQ8Qy/wDBMn9t+z1fS/2IP+Cg2jWPgW58ff8ABNtvFXiPTte+PP8AwTJvtU8WaNeWf/BQa68EweH/AAXc+HNH0fxNbeIfGOheKrrUfHvhOXwd4Z8WaRZ+OtU8FgH2/wD8NkftFf8ASJ39v/8A8ON/wSy/+mWUAH/DZH7RX/SJ39v/AP8ADjf8Esv/AKZZQAf8NkftFf8ASJ39v/8A8ON/wSy/+mWUAH/DZH7RX/SJ39v/AP8ADjf8Esv/AKZZQB8QfsoftX/HnS/jz/wU2vrH/gmT+2/4jufEf7b/AIB1nWNH0bx9/wAE24NR8BajB/wTb/4J8+HovCfiyXxD/wAFBtC0i88QXmkaDpfjq2ufAuqeNPCq+FfGnhmzvPE1r42tfGPg7wmAfb//AA2R+0V/0id/b/8A/Djf8Esv/pllAB/w2R+0V/0id/b/AP8Aw43/AASy/wDpllAB/wANkftFf9Inf2//APw43/BLL/6ZZQAf8NkftFf9Inf2/wD/AMON/wAEsv8A6ZZQAf8ABJ3/AJRZf8E0/wDswD9jf/1nX4c0Aff9ABQAUAFABQAUAFABQAUAFABQAUAFABQB8Afsb/8AJxX/AAVi/wCz/wD4cf8ArrL/AIJp0AdB+3x8SPj78C/gF8SP2jPhF8Vfg/8ADrwT+zt8H/jN8a/jNpfxH/Zf8aftLeKvGXhX4Z+C38dJp/wxsfDH7Y37IOkeG/EFtpHhvxVbta+Ktc1/TvFGo6t4fhGq+CbbR9RvNaAPwh/Zc/4Kzftd/tAftMeBv2ePDn7Yf7IGseLf2lfiB4ms/hzB/wAM0/sUfHPw58L/APhBP2e/EPxF1jw5/wAI7+xP/wAHHPxt+NumfD/U9M+CXjXxT/wmvj/wX47+yfFP4hf8IpeeP9A8Jax8O/CPhkA/X79rP9tD9oT9lXWPgH8LfDPwT+H/AO0x8TfGf7P/AMX/AIxfFXxLpl9+0x8N9Hg/4UV47/ZK+EniS6+FvwK/Zy/Zd/4KMfHrxH/wm3jr9qvRtd0/wfbaf4j/AOFZ+BPDWu6n4s+IXiCy0u/8QIAfkD+zn/wWt/4KEfGfWPgT4A8IfslfD/V/EH7Yv2b9pD4EeI/i9ov/AAUx0vR/h/8As96v47/ZnvfFPwc+IHjXwB/wR98JfDLx3/Y9l+0Bq/gr4b/tifDW91f9mf4O+BD8MPEf7R3xD+LHiDSNL8f/ALXQB+r3jP8AbP8A2kdK/wCChfww+A9h+x/+0/afCm4/Zg/4KA+ObixbWf2FptO+PXir4DePv2RLP4U/En4capJ+1XP428OeH7q28aeKPht4f0P4lH4PajfeKv2lPhjq3xG8E6b4W8H/ABE8dfA0A+YP2BP+ChH7Xfxh/aT+LHgD4j/Af9oD4n+EpP7R/wCJToifsUeHP+GQM/8ABWL/AIK7/s0f8X0v/wDhevgfU/Gn/CM/BL9m34K+CtX/AOFBXv7TP2r/AIUR4p8R6N/b3i3xr/b3xTAPoD9uf9u79oT4SfFP4pfs8fAr4Cf8Jh/wj/7P/wAE/GusfGPw54k/aY8QfFPwP4j/AGoPEf7XHgfwRe+APgt+zf8A8Exv+CkX2/8A4V//AMMp+JfFN74/+LfguH4WW/iPxB4K8KeIPDniD+1Y9K1sA+f/ANhD/gqB+2b+3L4j+D3h74e/CH9kDxB4f8L/APCvtd/at+Lmi6j/AMFSfh/4O1/wJ4l+Fng/xRf6h+z+P2iP+CW3wb+GXhv4geJLL4yfB39ob4U/C3xh+0H8SNY8Z/AnU4tMtdTl8P8AjO3/AGiPA4B6B8cf+Crfx6+H/wC0x+0l8BPhb+xb/wALR8P/ALOvxA8D/Dq8+IXkf8FJ/Fn/AAlGseL/ANnv4KfH64n8n9jr/gkd+2t8MvC39k2Xxp0/w5/wjuu/GdfHcv8AY3/CT6n4R0Lw/wCJPDFxqYB6/wDsQ/Hb9ov4s/H3xxF8V/j94g+Ifgmb4P6dJo3wwuf+CL37fv8AwTr8K+FPFXhjxoy3nj3Rvjt+11468baR4v8AEHi/SPG1v4e8TfCSTWNU1HUNO8GeE/GPw703wbbeFfjDdfEEA/V+gAoAKACgD4A/4JO/8osv+Caf/ZgH7G//AKzr8OaAPv8AoA+EPh/+334E8cft1/FD/gnzqHwf+N/w++Mvwz+Ddr8fo/FHjO3+D918L/H3wn1LxsPAGjeKPBOs+AfjD458WQPrOvJem00Px54J8D+Ibax066uNW0rTXl0+G9rJITzzJOI87oweEhwrxHlXDGcZfjXFY+lmOdZdmGcZbUovCSxeAr4WvlOBp5g6lPHupRp5jgsPWo08dDMMJgMc4xFPJc34cyeu3ianFOTY/PMqxmETeDeFyuthsJmFLEfWfq2Lo4nDZhWrZe4/VJ0atfA4qth69bATwWMxn3fUmx8Af8FLP+Tdfhz/ANn/AP8AwSd/9em/sb0Aff8AQBxvxD8f+FfhX4G8VfEbxxqFxpnhPwbot9r2uXdjpGs+IdT+x2MRkNro3hzw5p+reJPE2u6hL5dhoXhnw3pOreIvEWr3Nloug6XqOrX1nZT8eOxkMDQjVdHFYqrWxWBy/BYLA0J4rHZjmea43D5ZlWV4DDQ97EY/M8zxeEy/BUE4qrisTShKcIycl0YXDTxdZUYVMNRXJWrVsTjcXhcvwGDwuGo1MTjMfmOY46th8Dl2W4DCUa2MzHMcdiMPgcBgqFfGYyvRw1GrVh8C/wDBP/8A4Kl/Av8A4KG+Ivj/APD/AMCfC/8AaV+APxh/Zl17wno/xd+B/wC1h8Iz8G/i14dsfHukXOteCfE8nhiLxD4oih0TxNaWGpGxtdS1HTvFFqlnFfav4c03StZ8OahrXuU8uqV+HMv4ow2IweKy3HZnmmSVVhsTCviMsznJ5Uo4/LMxjS5qNPE0nV5VLDV8VhnWo4vCuusZgcZh6HHmFWll3EFfh6rKdSvHBvMcDjY0MTRwWb5aqtGCx+AhjaOEzGGHqUcXluMo/wBpZfl9atg80wdWlSnJYqGG/SyvPND4A+I3/KU39jf/ALMA/wCCln/rRX/BJ2gD7/oAydf1/Q/Cuhaz4n8T6zpfh3w34c0rUNd8QeINc1C10rRdD0TSLSa/1XWNX1S+lgstN0zTbG3nvL+/vJ4bW0tYZbi4ljijdxx5jmGCynAYzM8xxNPB4DAYeri8Ziqzap0MPQg6lWpKycnyxi7RhGU5u0YRlJqL3wuFxONxOHweDoVsVi8XWpYbC4bD051q+IxFacadGhRpU1KdSrVqSjCnThFynKSjFNtI+cf2M/2v/g/+3f8As9+FP2nfgLL4ju/hN458QfEjQ/CGqeKdJt9D1LXrX4a/Erxb8MbzxLbaXDqOpS2ug+JNT8H3uu+FxqUljrkvhzUNLm17RPD+syX2iWHu5jlWNymOUrH0vq9fNuHeG+JYYWTviMFhuJsjwGfYTBY5JOnDMcHhswpYbMKWHq4nDUsZTrU8Ni8XQjTxFTlnVpRzTiDKqdahiqnDud4vIsTjMHXo4vLsbiMJSw9aWLyvGUKk6eMy6vTxNKeFxSVNV4N1Iw9m4Tn9SV5xZ8Afsb/8nFf8FYv+z/8A4cf+usv+CadAH3/QB+V37c3/AAVZ8KfsMeOY/BGpfsTf8FGf2oobPwCvxE8YePf2Of2YP+FzfDH4a6O1xrCjT/iJ44v/ABz4M0nw3ryabol54iutOdrlbDw5JZavqFxaW95Bv8eed4Sh/blfGwrZblXD0FLMc/zJ0MFkcZU8vp5tmEIY+vXjFLJ8txGBxua168KOEwtHH4ZrEVJRxUcN6ayrETp5SqFTD4vH51VqwwWS4SpLE53KisUsBg8ZPLqVOVVYTNsxp4/LspnBznjcblGa0IU08KnU/RL4UfECH4sfC74cfFK28MeK/BNt8SPAvhPx5beDvHlnpWneN/C1t4u0Gw1+38PeMNP0LWfEWjWHifR4dQSw12y0vXtZsLTU4Lq3tdTvoY0uJPrc9yivw/neb5Fia+FxWJyXM8dlWJxGBnVqYOtiMvxNXC16mFqV6OHq1KEqtKbpVJ0KTnC0uRJo+ZybNcNnmVZfnODhiIYLNMJRx+C+tUXh69XBYqCrYTETw8m6uH+tYaVLEww+JjSxdCFWNLGYfDYqFbD0u/ryj0z4A/4JO/8AKLL/AIJp/wDZgH7G/wD6zr8OaAPv+gAoAKACgAoAKACgAoAKACgAoAKACgAoA+AP2N/+Tiv+CsX/AGf/APDj/wBdZf8ABNOgDn/+CgOgT+PfH3/BOb4RXnjf4weC/BPxf/bf8V+E/iTH8FPjl8Zf2evFXizwr4c/4J6ft7fFfSfDOofET4D+O/hx8RIvD8XxE+HHgXxVdaNY+KrXTtU1HwvpQ1S2vbaA27AH84Pjb4af8FAfg1+yP+1z8bv207b9p/8AZP0j4af8E4P2i/iPofxTb/gpH+2Z4G07wB+3nZ6J8O9J/Z0+GPw41q3/AODgH9u22+Ovh/xd428TePNI8Pt8RvgJ8Fn8W+KvD3wx0OPw/qGr/ESb4fW4B+3/AO198U/hIn7aGm+LfGf7ZPh/9hvwT+zT+zB8Sv2evG/7T+teOv2ePBMGl/H39tP4rfstfH34f/A74aeJP2kvB3xT+B2q/GDw/wDA79h7xb44+OHw0+IfgweNPCfwa/aJ/Z6+IfgfRdWtviRD4y8BAH5gf8E8fh/8DP2Dfj74V+OPx4+N/h/9jPwHB8H/ABj4HvviF8a/+CeH7Hv/AATj+Gf7Z3iDXvGl3o+ltp/xSvP+CZ37GXjb9mrw/Y23w5HxPtf2IfiT8ffEX7UHjn4haPqvizSdO8Xfsefs5+Bf2nv26gD7f+Nf7Mf/AAvH/gprDpOj/ED/AIXx8TfBf7IH7cuja5d/tzfs4f8AC/f2cf2YfDn7RnxP/YOh+G3w48G/AXwTH+yf4F174f8Axm+Aur/tofBbwd8arLxxq3xT+ONr4V+Pnwc+L/x9+PNl+yt45+D/AMOwD4A/4Jh/sV/8Jb+2H4o/4o39gC7/AOGP/tH/ACO37Av/AAmv/CJf8Iz/AMF1/wDguz/yYx/xkdoP/DDn2b/hXf8AxSP/ACcB/wAIl/Z/wu/5DX/Cr/8AirQD9X9c+B3wp/ac/a4/bb/az8Y61+0/ZfBv4KfB/wCCX7J+kaj+zH+0L+2h8IPEHxJ+IX7LGt/tO/Gb9ofVvBfhj9h/4l+FdX/aO8P+DtX/AGlvD37Pmh6PFB46+Jnhz9qD4LftPfBLR/h34c8SeH7h/HwB4/8A8E6P+CfnhLWPCXwj/aA8M/Hr9r/w/wDD/wAP/tf/APBQb406F4T0/wDbb/bi8QeBP2lPAniD9uL4/az+yT441O28Q/tO6x8JfHf7P/jv4S6xo3x413Vbb4ZeINY/bF1jxB8Lfiz4s+MfiD4f+IPjH4Z/aNAPH/i94s0TUL3wZ8ftf8TftP6H+y5+3p/wWe8V+LNNt/2SNZ/a40343/Fn4BfCH/gj98VP2c/BPibR4f2Erl/jj48+D/xh+OP7FOhftP8Awi1n4Qaz4x8F/EH9mrWvg18avEtzpmh6l4m0PwoAfQH/AATs8M/Aa6/4KSftneMfghc/tvrpGhfsQfsG+GXs/wBs3xZ/wUks/FU+o+LPjz/wUL1TxBcw+Bf+ChmsweNvEfh+1tvBfhCLwL4st/D2qeFfBeo3nxX0f4Z6zoOr+PfjjY+IwD93qACgAoAKAPgD/gk7/wAosv8Agmn/ANmAfsb/APrOvw5oA+/6AP54PBmreIf+Ijf4p/FGT4M/tP23wm1//gn34Q/Zg0j4xX37JP7T1h8Gr341eE/jh4h8fa34cX4u3vwjg+G8WgxeFSmoWHxHn8TxfDPW7ma30bRPGGo63c2+nS7cCV6cuGfFjB1HPCYniTxH4T4hyWjmNKrlk8blHCnh/mWSZ1i0sxhhVQdLNKMsLgMNinQxed+0w1bJKGY4fF4WrW4ON8PVfEXhXjaUVisLw/wdxFlWcVcDOGPWCx/E/E1HMcnoTjgpYidXnweMo1swq0I1aOSuOJpZ3Uy+tgsZTof0P1id58Af8FLP+Tdfhz/2f/8A8Enf/Xpv7G9AH3/QBwnxP+IOl/Cj4feLviPrWheO/E+meDtEu9bu/Dvww+H/AIw+KnxB1tbVRs0vwj8PfAGjeIPF/irW72Vo4LTTNF0i7mLOZ7g29lDc3UHn5pmCyvA1ca8HmGYShKhSo4LK8JPGY7FYjFYilhMLQpU4uFKjGpiK9KNfHY2thMryzDurmOb4/L8rwuMxuH68DhHjsVTw31nCYOM1UnUxWOrrD4XD0aFKdevVqTtOpUcKNOcqeFwtLEY7GVVDCZfhMXjq+Hw1X8Yf+CTPx0H7QHx4/a8+MfiT9g/9vj9mH41/HCXwV42+MfxJ/bK/Z51L9n7wdqGh+CbU+AfgN8BvgTaan4s8Wz+NdJ+GHgiPxFqXjnxRcJ4Uv9d8ca3rfjqfw1oum+P9G8EfD/6DL8PDCcIQy/D18Jh6OCz151meGniXPM+IOLuMMJVlxHxBGk6UOTKsrwnDGQcNZXh4TmstyPCZBhsU8Vm9bNc5zjy81xaxnFlKs6OZ1cLS4e/sPh2VWFKpl+RcP5DjKGIrYarWpQoqhnHGPEXEGdcX4ulOONxFONV8Of2xmeT8HZBVj+7NeedJ8AfEb/lKb+xv/wBmAf8ABSz/ANaK/wCCTtAH3/QB+Y//AAVI+EH7d/xn+Efw88O/sL3P7KF1q+ifEuy8ZfFnwX+15P8AGSL4c/EDwh4W0jUtV8K6BDD8ENNuvF2q3um/EeDwr4t/sC51HR/D+vTeHLPSvEra54autZ8L638xxDhq9ZVq1fCU8xyXDcOcR1KmDoYeeLzyhxGv7Lnw7nfDuDnF5fXzzJcPSzyvkNbMY4j+xuJquQcSZPhqHEmSZJneSepgnhamFq4R1a2Gx+MzXI6ca/t/quX1MmpYjEV85y3NMRSnDFxy3N6lPLMBnOFoONDOOGquf5Dmsq2T5tj8vx3yF/wbS/Cn9qv4J/8ABKf4WfDX9rD4bW/wj8RaB8SfjZL8OvAGq+DviP4C+KOifDvWviZ4h115PjF4V+JOnaTfab4t1bx/qXjvWPDD6FYQ6Hf/AAlv/hxqBMutXWsTSfrnGWKwWLpcGSo4inicxw/APCGBzZ4StRrYChLAZNhsHk+DpOEpV6WZ4Lh2jlGF4ow+J5XhuK6Wd0MLCGBp4WK+eqrGz4x8QcViFh5Ucw4qxWNlicMqrwmNzStSpRzLF5PWneOJ4cq06eBjlOIcp4idWGYLETcY0bfvrXxR2nwB+xv/AMnFf8FYv+z/AP4cf+usv+CadAH3/QB8wftW6ZrvjbwN4X+DGi+H9f1iy+OvxD8M/Djx3qemaPeahofhr4SD7b4v+L1x4y1G2T7PoGj+Lfhz4V8SfDLSdQu5Yln8ZeO/DGnQCSa8Ch4JOef5BOblSwuT45cX4nFc9Omo4ng+dHOeGsHSVZSo46eacbUuF8DmOUqM8RiuF6vEuMpQhSy3EYnD1WnKjlGeVqE5fXq+XSyXLoUatahjaeJ4mrU+H8Rm+AxOHjKtgcbwrlWY5lxdgcdalThmOQ4HBrFYXF47CVV9PKqqqqqhVUBVVQAqqBgKoGAAAAAAMAcChtttttttttu7berbb1bb3ZnCEKcI06cYwhCMYQhCKjCEIpRjGMYpKMYpJRikkkkkrIWkUfAH/BJ3/lFl/wAE0/8AswD9jf8A9Z1+HNAH3/QAUAFABQAUAFABQAUAFABQAUAFABQAUAfmBpvgD9vr4HftAftneLvgp8Ef2QPjB8Mv2mP2gPBPx08M6x8Uv2xvjR8CvHfh3+xP2QP2Wf2b9Z8La74I8J/sG/tB+H5PL8Qfs+ar4i0zW9P+Itx9v0fxHp8F1pGl3tlcxygHoH/Cxv8Agqb/ANGb/sAf+LLP2iv/AKU7QAf8LG/4Km/9Gb/sAf8Aiyz9or/6U7QAf8LG/wCCpv8A0Zv+wB/4ss/aK/8ApTtAB/wsb/gqb/0Zv+wB/wCLLP2iv/pTtAB/wsb/AIKm/wDRm/7AH/iyz9or/wClO0AH/Cxv+Cpv/Rm/7AH/AIss/aK/+lO0AH/Cxv8Agqb/ANGb/sAf+LLP2iv/AKU7QAf8LG/4Km/9Gb/sAf8Aiyz9or/6U7QAf8LG/wCCpv8A0Zv+wB/4ss/aK/8ApTtAB/wsb/gqb/0Zv+wB/wCLLP2iv/pTtAB/wsb/AIKm/wDRm/7AH/iyz9or/wClO0AH/Cxv+Cpv/Rm/7AH/AIss/aK/+lO0AH/Cxv8Agqb/ANGb/sAf+LLP2iv/AKU7QAf8LG/4Km/9Gb/sAf8Aiyz9or/6U7QB4B+yd4S/4Km/sv8A7LH7NP7NH/DL/wCwB44/4Z3/AGf/AIN/Av8A4TX/AIeI/tFeGf8AhMP+FSfDrw54A/4Sn/hHP+HWniD/AIR//hIP+Ef/ALW/sT+3tb/sr7X9g/tfUvs/2yYA9/8A+Fjf8FTf+jN/2AP/ABZZ+0V/9KdoAP8AhY3/AAVN/wCjN/2AP/Fln7RX/wBKdoAP+Fjf8FTf+jN/2AP/ABZZ+0V/9KdoA8A/aW8Jf8FTf2iPh14c8Af8Mv8A7AHg/wD4R/8AaA/ZO+On9rf8PEf2ivEH2v8A4Zf/AGp/g3+0v/wi32D/AIdaaJ9n/wCE4/4VJ/whX9t/bJv+EZ/4SD/hI/7I8Qf2V/YOpAHv/wDwsb/gqb/0Zv8AsAf+LLP2iv8A6U7QAf8ACxv+Cpv/AEZv+wB/4ss/aK/+lO0AH/Cxv+Cpv/Rm/wCwB/4ss/aK/wDpTtAB/wALG/4Km/8ARm/7AH/iyz9or/6U7QB4B4j8Jf8ABU3xB+1P8G/2l/8Ahl/9gC0/4VJ+z/8AtLfAv/hCv+HiP7RVx/wkH/DRHxF/ZO8f/wDCU/8ACR/8OtIf7K/4Q/8A4Zf/ALJ/sT+wdS/4SD/hOPt/9r6J/wAIz9j8QAHv/wDwsb/gqb/0Zv8AsAf+LLP2iv8A6U7QAf8ACxv+Cpv/AEZv+wB/4ss/aK/+lO0AH/Cxv+Cpv/Rm/wCwB/4ss/aK/wDpTtAB/wALG/4Km/8ARm/7AH/iyz9or/6U7QB4B8G/CX/BU34SfEX9rHx//wAMv/sAeIP+GoP2gPDnx0/sn/h4j+0VpX/CD/8ACP8A7LH7NP7NH/CLfb/+HWmpf8JN9r/4Z3/4TX+2/sfh/wCz/wDCYf8ACOf2RN/wj/8Ab2tgHv8A/wALG/4Km/8ARm/7AH/iyz9or/6U7QAf8LG/4Km/9Gb/ALAH/iyz9or/AOlO0AH/AAsb/gqb/wBGb/sAf+LLP2iv/pTtAB/wsb/gqb/0Zv8AsAf+LLP2iv8A6U7QB7B+xF8FPFX7Nf7F/wCyJ+zn461Dw/q3jb4A/swfAL4KeMdU8J3Wo33hXUvFXwr+FPhPwL4h1DwzfaxpWg6veeH7zV9CvLjRrrVND0bUbjTpLaa+0rTrl5bOEA+n6ACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAP/2Q==" alt="" />

保持序列1不动,那么:
序列2中的“1”对应序列1中的位置1;
         “7”对应序列1中的位置3;
         “2”对应序列1中的位置4;
         “4”对应序列1中的位置2,那么重定义数组c为:

aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAA6ANcDAREAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+5j47/Hf4Z/s1/DPVPi78XdU8QaT4J0nxB4A8JySeE/AHxC+KnirUvFXxU+IXhb4UfDvwz4Z+Hfwo8LeNviJ4v8QeL/iJ428K+FdG0bwr4V1nUbjUdZtibZLZLi4hAPmD/h5Z+zr/ANE5/b//APFTv/BU3/6DegA/4eWfs6/9E5/b/wD/ABU7/wAFTf8A6DegA/4eWfs6/wDROf2//wDxU7/wVN/+g3oAP+Hln7Ov/ROf2/8A/wAVO/8ABU3/AOg3oAP+Hln7Ov8A0Tn9v/8A8VO/8FTf/oN6AD/h5Z+zr/0Tn9v/AP8AFTv/AAVN/wDoN6AOf8M/8FWP2S/GmnXOseDvD37b/izSLPxB4s8J3mqeGf8Aglt/wU817TrXxV4C8Vaz4F8deGbm+0v9j+6toPEHgvxt4c8Q+DvFmjSyrqPhzxVoWs+HtYtrPV9LvrOAA6D/AIeWfs6/9E5/b/8A/FTv/BU3/wCg3oAP+Hln7Ov/AETn9v8A/wDFTv8AwVN/+g3oAP8Ah5Z+zr/0Tn9v/wD8VO/8FTf/AKDegDn/ABZ/wVY/ZL8BeFfE3jrx14e/bf8ABfgnwX4f1nxZ4x8Y+LP+CW3/AAU88OeFfCfhXw5p1zrHiHxN4m8Q6x+x/Z6RoPh/QtIs7zVNZ1nVLy107S9Otbm+vrmC2gllUA6D/h5Z+zr/ANE5/b//APFTv/BU3/6DegA/4eWfs6/9E5/b/wD/ABU7/wAFTf8A6DegA/4eWfs6/wDROf2//wDxU7/wVN/+g3oAP+Hln7Ov/ROf2/8A/wAVO/8ABU3/AOg3oA5/Wf8Agqx+yX4c1Hwno/iHw9+2/oWr+PfEFz4T8C6XrP8AwS2/4KeaXqPjTxVZ+FfE3jq88M+E7G+/Y/gufEfiC18E+C/GPjG50bR4rzUYPCvhPxN4hltl0jQdUvLUA6D/AIeWfs6/9E5/b/8A/FTv/BU3/wCg3oAP+Hln7Ov/AETn9v8A/wDFTv8AwVN/+g3oAP8Ah5Z+zr/0Tn9v/wD8VO/8FTf/AKDegA/4eWfs6/8AROf2/wD/AMVO/wDBU3/6DegDn7n/AIKsfsl2firRvAt54e/bftfG3iPw/wCJvFnh7wdc/wDBLb/gp5B4q13wr4L1Hwno/jHxNo3h6X9j9dX1Tw/4T1fx74F0vxNrNjZz6doOo+NPCdjqlza3PiPR4rwA6D/h5Z+zr/0Tn9v/AP8AFTv/AAVN/wDoN6AD/h5Z+zr/ANE5/b//APFTv/BU3/6DegA/4eWfs6/9E5/b/wD/ABU7/wAFTf8A6DegA/4eWfs6/wDROf2//wDxU7/wVN/+g3oA+gP2e/2nfhF+1Bo/jzWfhJd/ED/i1/xAb4W/ELw/8Uvgn8bP2f8Ax34P8d/8IJ4E+J0Oha78OPj98Pfhl8QLL7b8P/ib4D8WaZqcnhn+x9V0fxNp9zpuoXf+kLCAfP8A/wAFLP8Ak3X4c/8AZ/8A/wAEnf8A16b+xvQB9/0AeVfHb4m/8KU+CPxh+Mf9if8ACS/8Kn+F3j/4k/8ACOf2l/Y39v8A/CDeFdV8Tf2L/a/2DVf7K/tT+zPsP9o/2XqX2Lz/ALT9gu/K+zyfPcWZ9/qvw1nfEX1T69/Y2XYnH/U/b/VvrP1eDn7L6x7HEex57W9p7Cry78ktj2uHMo/1g4gyPIvrH1T+2c3y7K/rXsvrH1b6/i6OF9v7D2tH23sva+09l7al7Tl5faQvzLwP4GfHH9qj4m+Hvgz4i8bfsv8Aw08I6T8VfhH4y+Jer+JfAv7Td58RPCHw+1kReANQ+DPgLVpvFHwF+EfjzXdS+J+ieKfFOoeI9d8PfDq80H4Zz+BZtPkufF7+I9Hmr7XPcprZJjeKsnlWoVc54cpPCYWnWdWhled8RUM5zzLcwy3D5hQpY3F4LLMBhMBlOYyzjGZTCtiHm9fB4bKKlTK3Vxvy2Q5lhc7ybIs9i6tHB55j8rqxw0KarZjguFcx4eebPPcTSqTwuBnmNDNHTyVZBhsxrqrHEUMyea0qKxNDDWf2OP2lPiL+0Tpvx4074tfCfwV8IPiL+z/8fvEPwG8VaD8Ovi7rvxs8Favf6J4G+H3jqLxH4f8AG/iX4N/AjXZbS8sviBa2Umn6j8PNOmtLrTrh1ubqKeNk5Y0sNWyLh3PMLWrzpZ9S4m5qGIw9OhUweJ4X484s4DxlKM6eKxMcTQxGL4Ur4/DV2sPUeGxlKnVw1OrTnzEcVXjn3EGRYihShUyOPDdWOIo4idaGLocS8KZLxXhpOnPDUJYerh8NnVLCV6SlXg69GpOnWlTlE+yK5TvCgD4A/wCCaf8Aybr8Rv8As/8A/wCCsX/r039sigD7/oA8Gvv2mPg5pfx50H9mfVNe8Q6X8ZfFWiav4i8K+HtS+G3xN0/QfFGjeH9Kh1nXr3w38RbzwdD8NdeXRLG5g/teHSfF95c6beyrpd5DDqh+xjwcJxLk+Oz/ADHhihWxSzzK8As0xeDxOV5pgoPLZV8JhVj8HjMZgsPgcywjxWNo4VYjLsTiqTxMcTQUva4LGww/6thfBPxHx3hTmvjZgcpyfHeG+Q5nl+T59nGC404Ixea5HmWbY+pluVYbOuDsPxHU40yl5niqNX+z6mYcPYejjcNCWPw1Spgf9pPea94/KT4A/wCCsX/KLL/gpZ/2YB+2R/6zr8RqAPv+gAoA+V/g3+25+yp+0H8UPiH8GPg18avC3j74lfCwTSeMvDekQ61F9ntrXUTpN7f6DrGo6VY6B410vTdTMNjquq+CdU8Q6bpV1eadFqN1atqeni5+T4S454T47pZnX4SznD53QyitSpYyvhqWKp0JRr18bhsPjMDWxNChSzXK8VUwFeeEzfK5YzKsVh6mCxeHxlXC5ll1bFfu/iP9GPx68IuBuD/EnxI8NM94T4K47dOHDedZhUyyp7avXwf9oYXCZtl2Dx+KzbhnHY3AqrisBgOJsDk+Nx9DDY2pg6FeOBxjofVFfWH4QfAH7ZH/ACcV/wAEnf8As/8A+I//AK6y/wCCllAH3/QAUAecfDv4u/Df4szfEGH4c+LNO8Wt8LPiNrnwk8ey6Wl4bXQPiN4Z07RdT8ReFXvLi2gtNQv9Dt/EGlwarLpM9/ZWGqPeaJc3Ues6VqthZceX4/B5rgqGZZdiIYvA4mpjqeHxVK/sq8suzLGZTi5UnJRc6UMfl+Lo060U6OJhTjicNOthatGtU+z4w8PeM+AKfCNTjLIMZw+uO+Dcr8QeFIY6eGVfNuDc7xmZ4HJ8+jhqNeriMJhM0rZRjquAp4+lhMTisDHDZnRoTy3H4DF4n0euw+MPgD4jf8pTf2N/+zAP+Cln/rRX/BJ2gD7/AKAPmL9pv9sz9mX9jjRfC2vftJfFjSPhpZeNtWu9G8KW0+k+J/E+ua7d6daLeapPYeGfBWh+JPEkmkaRFLZx6z4gbSl0HR7zVdD0/U9StL/XtFtr/wCWz/jbhXhbE4DB5/nWFy3E5lJLCUq0a824upGkq1eVClVhgsL7STi8XjZYfCpwqt1rUarh+4eCP0bvG76RuZZ7lXgxwDmPGuJ4ZwGHzLP61LMMjyPK8qw+MxDw2BpYvO+Js0ybJoZjmFSniZ5blCx8s1zHD4DNMXgsFXwmU5lWwv0N4f8AEGh+LNB0TxT4Y1jTfEPhrxLpGm+IPD2v6Le2+paPrmh6zZQ6jpOsaTqNpJLaX+m6nYXNve2N7ayy291azxTwyPHIrH6yrTnRqVKNSLhUpTnTqRdm4zhJxnFtNptSTWja00bR+P5vlOaZBmuZ5FnmXY3J86yXMMblOcZTmWGrYLMcrzTLcTVweYZdmGDxEKeIwmNwWLo1sNisNXpwrUK9KpSqwjOEorXqDzz4A/Y3/wCTiv8AgrF/2f8A/Dj/ANdZf8E06AD/AIKWf8m6/Dn/ALP/AP8Agk7/AOvTf2N6APvDVY9Qm0vUotJnhtdUlsLyPTbm4jMsFvqD28i2c88QIMkMVyY5JIwQXRWUEZry87pZjXyXN6GUVY4fNq2V5hSyuvNpQo5jUwlaGCqyb0UaeJdKcm9Eos68BPCU8dgqmPpVK+Ahi8PPG0aM1Tq1sJGtCWJpUptNQqVKKnCE2moyadtD+a34S/Db4J+H/wBjP9pXWfEP7KXx5+D/APwUI8L/ALAP7S3w8/bI+MXjX4J/HH4faH8afHth4P1S18fePfGn7Qep+H/DHwC/bJvfHXjzw6fGnwm8caF4n+L3ivwp4J8RXY8Mt4B8N6v4p0pvH8VZ5PDwo8SZ8FYN8P8ABea8I5PiafDeY2w+YZXiMNgMdiMuyrF5ZmNSrmmK4syyWb8Q4fi3jbBUsTT4lzDD4zMOIeKc1xOd8Pzzf3uDVjJeLnA0OIatLOM9oeJWJxWV51lNCcsvq8O5pn2Cr4avhcfhcXmNDJOFXlcOF8HkPhpneeVs24VUcDlOE4fVXhDiDG5L9NeGNLji/bT/AOCPfjCx+FnxG1P7B/wT5+OPgbxf8W/DXwK+J3iTwN4b/wCE28K/sza38NvCfj342+HPA2peAvCUWpz+AfiXfaLovi/xlpUVnfj5re0vvGPh9dd/VM5pRh41/SDxHs44VY7hirlaxeJjHA0czxuA8X/7bw+XYbF4lUKWaYrA5dHOMZTwmGq4mrhFia8VTp1swhDEfmvC8qEvA7wphU5MRjMJxTwJmWCo04rGY3L8qn4S8aZDxBjY4egq2Jy7BYzOM84Gw+OrThh6WYrDUMXJ4jCcM5hiMq+of+CfX/JR/wDgpf8A9pEvHX/rPX7NtfO5Z/yb7w//AOvni9/7ET4xHdif+Thce/8AYF4U/wDrm+Az9JqxPTCgD4A/4Jp/8m6/Eb/s/wD/AOCsX/r039sigD7/AKAPxc/aV+L3wm0P/gr/APsIaVrfxQ+Hej6p4c+FP7QvhrxDpuq+NfDWn3+g+I/iFovheLwD4f1mzu9ThuNL1vxxLPBF4P0q+jgv/E0k0SaLBetIgb8cwmd5M/HjMcKs3yx4mfhngOG4YdY/CuvPiLE8b4PG4fIY0va+0lnWIweJw+Lo5WovHVcNXo16dCVKrCcv9KvBXw84/wA0/Z3/AEqsflnA3GGY4HOePfCHO8nxuB4ZzrF4TNcm4QzPO6nFmb5bicPgqlHHZZwvTpVZ8RY/Czq4XJIUqksyq4aMJNftHX7Gf5qnwB/wVi/5RZf8FLP+zAP2yP8A1nX4jUAff9AGJ4m1nRvDvhvxB4g8Rv5Xh7QtD1bWdek+w3eqeXo2l2Fxe6o/9mWFte32o7LGCdvsNlZ3d3d4+z21tPNIkT+Tn+PynKsizrNM+5f7Dy3Kcyx+c8+Dr5jD+ycHg62IzHny/DUMVicdH6nTrc2Dw+FxNfFK9ClQrVJxpy9TJMtzLOc6yjKMmjz5xmuaYDLcqh9aw+B58yx2LpYXAx+u4uvhsLg+bFVaS+tYnE4fD4e/tq1elThKpH8bf2eNW8LfFL/goxoP7S/7OHxc8KftOfA34p/sq654I8R6tYaB4XtdS/ZM0fwZ4r8P+Kvh18L47zw5pnhK88IW/wAQ77xrqcum/Df4i+Gn+KzW/hDX7/V7q/03wxLLo359wJDFV+NeOeIsHn1Li3hji/J8mzeHEM3gHj8uzuGNlWwPBsqmXxwtOpRwGRZhicXj8LicBHO8v9hw9R4prxzqX13iH/R3xgy/PeBPocZr4KeMvh9n/gj4o8CePOV8T5Nl+LzbPa+C8f8AMeJMgzfIeMeOZ4bOcdxBhuIa3CGE4ZwNPG8Z8HZ1HgKNbiLKcLl9DCY3PKdPMf2tr9XP8zj4A/bI/wCTiv8Agk7/ANn/APxH/wDXWX/BSygD7/oA+X/2wtW+P+k/AzxB/wAM1/DO9+LPxK1TVNB0WTwnpXxH8NfCXXm8H6nqUVv401Dw38QfFki6N4Y8S2vh43seg6zJBf3Wk6ncW2rWem6hc2EdrL8Px/8A6wVMmoYLIchxPEVPMsc8vz7A4HiKlwrj45BWy7MZ4qeDz2c6eIwFTEYylgMtr4jK50s6oYLH4rEZNjcpzKjhs5y/9y+jrgPCXH+KWUf8Rp42w3AHBeBwObZlDP8AH8GZ14gZUuIsFgqlXhrCZ1wjw/CWY55ktfN1hp5rlsKuFoZhgaNbL8TjcJRxc68PzE/4ITan44PgD9tjw54h+DFv8JPD2jftu/FbUNOtLPxx4f8AFdpo/jLV7TR7Pxz8H7W10W2gY2/wettB8I2sHjOMjQfG8XitRoFvbjw9qHm+P4K1cRU8LeF4V8to5XRwtbiDCZbSw0sKsPjMsXEOZYuOOoYXB06NDLKNPMsZmmS0ss9nF0oZLHGUlDCY/C04f2/+1QwPC64s+jLnOUeJVbxBzfMvoxcBYTGYjEcL5vkOIzHhzL8RmOJ4W8Ra9fM61VKt4i1814hr1eG5r+1eGJ5BJ5tWrPN8Hyfu3X6gf5XHwB8Rv+Upv7G//ZgH/BSz/wBaK/4JO0Aff9AH5f8A/BTj9pD9lf4N/CTXvhZ8cfiL4D+Hvin9pXwnqHwjXWNZ8Mar418Q+HfhvrkeqWvifx3c+FvCPhPxr4p1XTfCVlca5deBdOvNBbwzrnxRm0DQ9U1Tw7pF94i8VaB+NeKef+H1KjiODOKM6w+VYnizB5Y89lgcJWxmeUeG8qxmZYnLsVOOBwuJrYSVTMJZtlvDGYYxx/s3MMdnWd5PQzCtk2a4Kp/cf0IvBnx38RvEHKeO/C/g7ivi/IfBXP8ACeILy7Lc7wHDOUZxxnlc8DXyPhWhnvEOf8NZFgMZxBiaWV0OKcZh81Wd5XwNTzbNMDgc5zDC5PkObfY/7Ld98LL/APZy+CMnwNl1S5+DNp8M/COj/Cq/1q0vbHU9V+H2g6RbaJ4R1q7ttTtrHVUbW9D0+y1aNtWsNO1aaG9jm1TTdPv5Liyg/YaGNp5phcFmtGCp4XNsvy7NsFBU/ZRjl+aYHD4/LlCi23QprA4jD+zoN3oU+Wi1FwcV/OXjpheO8J4yeJ0PFGGBo+JGI424gzHjzC5biMNisDgOL82zGvmnEOW0K+Cr4rASWWZpjMVl845fi8Zl9Ophp08DjcZhIUcTV95rQ/KT4A/Y3/5OK/4Kxf8AZ/8A8OP/AF1l/wAE06AOf/4KseJtO8F/sl+HvGOsW3iC80jwn+2//wAEtvE2qWfhPwn4q8e+KrrTtB/4Kefsf6pfW3hnwL4F0bxH428aeIJ7a1li0bwn4O8Pa74q8R6i1to/h7RtU1e8s7GcA6D/AIeWfs6/9E5/b/8A/FTv/BU3/wCg3oA5Xx3+3r+yd8S/BHjH4c+NvhL+3/rfgzx94W1/wX4t0b/h1V/wVe03+1vDXijSrvRNd03+0dI/ZBsNVsPt2l311a/bNMvrPULbzfOs7q3uEjlTzs2yrAZ5lmOyfNKH1rLsyw1TCY3D+1rUPbYetHlqU/bYapRr0+aOnPSq05reMkzty3MMZlOYYHNcvrfV8fluLw+OwVf2dKr7HFYStCvh6vsq8KtGp7OrThPkq06lOduWcJRbT4H4O/tX/sZfAj4VWXwY+HfgD/gqUvgPTbS90/S4/HX7B3/Bbr4ueL9K068t1s103SfiZ8W/2efHHxM0vTdLtEjtvDmn2Hi63s/CsEUMXhqDSY4YlT1s2xGIzynXhmVevWqYmhjKGJxtGtUwWaYl4/EYvFYrF4jN8DLDZpWzOpXxtecc2q4yWaUUqEKOMp08JhIUPLyvDYfJpUnl1ClRpUKuFq4fBzhHFZdho4LD4XC4bC4bK8Wq+XYbLqdDB0IvK6GFp5dUl7epVws6uKxU62T+zz+0h+wr+y34c8WeF/g98Jv+CmlrZ+PPHOpfEvxrq/xF/wCCfn/Ba745+NfFfjnV9I0LQL/xF4g+Inxz/Zz+I/j7VbubRvDOg6bHFe+JZrO1tdMt47W2gzIXueKqzwWW5dahTwWUUcdQy/D4fC4bDU6EMzzrM+IsxlL6vRpSr18bnec5pmWJxOJdbEVsTjasp1XHkjGKeDoU8dmOZJVZ47NZYCWPxFbEYjETr/2XluEyfL4JV6tSFClg8rwGDwVCjh40qUKGHpxULpt+/f8ADyz9nX/onP7f/wD4qd/4Km//AEG9c51B/wAPLP2df+ic/t//APip3/gqb/8AQb0AfEH/AAT5/wCCg3wG8J/Abx9peqeAf237q5uv23/+Cm3iaKXwz/wTJ/4KSeNNOXTvGn/BST9q/wAY6PbXOseDv2UNd0iz8QWeka7Y2fizwneX0HirwF4qg1nwL460bw5428OeIfD2lgH2/wD8PLP2df8AonP7f/8A4qd/4Km//Qb0AH/Dyz9nX/onP7f/AP4qd/4Km/8A0G9AB/w8s/Z1/wCic/t//wDip3/gqb/9BvQB8Qf8FNv+Cg3wG8af8E2/+Cg3g7R/AP7b9nq/iz9iD9q/wzpd54s/4Jk/8FJPAXhW11HXfgN4+0uxufE3jrx1+yh4c8E+C/D8FzdRS6z4s8Y+IdC8K+HNOW51jxDrOl6RZ3l9AAfb/wDw8s/Z1/6Jz+3/AP8Aip3/AIKm/wD0G9AB/wAPLP2df+ic/t//APip3/gqb/8AQb0AH/Dyz9nX/onP7f8A/wCKnf8Agqb/APQb0AH/AA8s/Z1/6Jz+3/8A+Knf+Cpv/wBBvQB8QftX/wDBQb4Da78ef+CZOqWPgH9t+C28F/tv+PvE2sRaz/wTJ/4KSeHNRvNOuv8Agm3/AMFBvB0Vt4T0fxD+yhper+PfEC6v4s0u8ufCfgWx8R+KrPwra+JvHV5o0HgnwX4x8Q6EAfb/APw8s/Z1/wCic/t//wDip3/gqb/9BvQAf8PLP2df+ic/t/8A/ip3/gqb/wDQb0AH/Dyz9nX/AKJz+3//AOKnf+Cpv/0G9AB/w8s/Z1/6Jz+3/wD+Knf+Cpv/ANBvQB8QePv+Cg3wGuv+Ckn7KHjGLwD+2+ukaF+xB/wUG8M31nc/8Eyf+Ckln4qn1HxZ8ef+CZOqaXc6N4FvP2UIPG3iPw/a23gvWIvE3izw94e1Twr4L1G88J6P4x1nQtX8e+BbHxGAfb//AA8s/Z1/6Jz+3/8A+Knf+Cpv/wBBvQAf8PLP2df+ic/t/wD/AIqd/wCCpv8A9BvQAf8ADyz9nX/onP7f/wD4qd/4Km//AEG9AB/w8s/Z1/6Jz+3/AP8Aip3/AIKm/wD0G9AHn/8AwTl+Jfhz4wfE/wD4Ki/EXwnpvxA0jw/4i/b/APBn9n6f8UvhP8U/gd47t/7I/wCCZX/BOPQrr+3fhb8a/Bvw/wDib4X8290y5n0z/hJvCOkf23o8un+ItG+3+H9X0rU70A9A/wCCln/Juvw5/wCz/wD/AIJO/wDr039jegD74upJ4bW5ltbf7XcxW80lvaeclv8Aap0jZorfz5AY4fOkCx+c4KR7t7Aqprlx1XE0MFjK+Cwn1/GUcLiKuEwPt6eF+uYmnSnOhhPrNVOlh/rFVQo+3qJ06PP7SacYtGtCFKpXo069b6vRnVpwrYj2cqvsKUpqNSt7KDU6vsoNz9nFqU+Xli7tHBfCPxJ4/wDGPwv8AeK/ir8Nf+FN/ErxD4T0PWPHXwo/4TLRfiH/AMK78U39hDca14P/AOE68OQWugeLv7Bvnm0//hINHtoNO1TyPtdpEkMiqPXzChg8NjKtHAY7+0sJBUvZY36tVwftnOjTnUX1es5VKfsqsp0byb5/Z+0jaM0jC79ri4cv7qjmOZYbCVbr/bMBhcwxOHy7MvZ/Fh/7UwFLD5j9TqN1sF9a+p15SrUKkn6JXEUFABQAUAfAH/BNP/k3X4jf9n//APBWL/16b+2RQB9/0AfMPi39rH4e+Dv2qvhD+yDqPhj4rXPxH+M3gD4i/Efw74ttPhzrkPwc0zRvhquktqukat8VNWXS/DGoeMtSTVTNY+DfBlx4t8RaRZWf9qeNbDwnpWteE77xDGW1IZpjs/y+hJUsRw7kVLiHFLFtYd4zBVM6yLIqiyqjN/WcweFxfEeVyxmLo0P7Kw6qzwtTMVmcHgHpjqf9n5flOZV5wlSzriKnw1g6WHbxFanjZ5DxHxC6+P8AZRlQy3DLB8M42lQhjq+Hx+YYitSnlWBx+CwmcYzK/p6rMz4A/wCCsX/KLL/gpZ/2YB+2R/6zr8RqAPv+gCG5ubeztri8u5ora1tYJbm5uJ3WKG3t4I2lmmmkchI4oo0Z5HYhURSzEAE1liK9PDUK2JrOapYelUr1XTpVa1RU6UJVJuFGjCpWqz5YvlpUqc6tR2jThKTUXrRo1sTWo4fD0p1q9erTo0KNKLnUq1qs1CnSpwinKc6k5RhCMU3KTSSbZ8Y/Cz9tvw38Q/jvb/s+eKfgd+0H8CPF3ivwB4j+K/wV1r41+GvAGk+Fvj/8N/B+uaHofizxJ8PJvA/xM8feIvC2reGT4u8D6tr3wz+Ovhv4O/GLStF8Z6Pe3vw7hex8TQeH+zC4eWJhnFJzo4fN+HqOV4vPMgqVqdbMcvy/N8XmGXYPM4YrAyxmRZrl8M0y2vlmPxGR5xmiyrGYjJ45pHB0eIuHq2aZ4zkwsMvxdCrTzPJs0x9TKcFxBlsnXyipm8MsqZzSy6U6ioY2jUx+WYXNsZlGMrYGGVZ1h8izmrlGYY2ngnKf2pWAj4A/bI/5OK/4JO/9n/8AxH/9dZf8FLKAPv8AoA4T4leOT8OPBmseLYfCHjP4g6hYra22i+A/h5pmn6r418Za9qd5Bp2jeHPD8Ot6t4e8N2V1qWo3VvDca/4w8TeFfA3hawN54m8c+LPC3hDSNb8QablVqVIypU6OGq4qtXqShTo0p4Wj7tKhWxWIq1MRjsRhMFQp0MJh8RXtXxNOpip04YDL6eMzTF4HA4row1GnWm1WxWHwOHpwdSvjMUsTLD4enzRhFzhg8Pi8XVnVrTpYehQwuFxGIxGJrUcPQo1KtWEX5z+zl+0JpX7RfhDxNr8Pw7+JXwg8VeAviD4l+FvxI+FHxds/Blv4+8AeN/DUWm6jLpWr3vw18bfEv4ba7a6v4a17wz4v0HXvAXxD8YeHtQ8P+JNLJ1WDV49V0nTe2dGn9SyvMsLiqOOy/N8Pj62CxVGjjsPGVTJ8+zjhXOsLOhmWDwGMhWynibh7PMmrVvqzwOOqZdLMslxmaZHjMtzXG+ZSxcKmYZzlcqdSljMixeWYTH05ujOKnnHDGQcX5dUo1aFWtTqU8RkPE2UYlpyjWw9WtVwmJpUcVh61KH0DXOdZ8AfEb/lKb+xv/wBmAf8ABSz/ANaK/wCCTtAH3/QB5j8Z/i74L+Avws8cfGD4hT6rD4Q8AaDd69q0Ph/Q9V8UeJdT8gLFY6D4W8LaFbXuueKPFXiHUZbTRPDPhrRbO71bXtdv7DStOt5ru7ijbzM3zXD5Nl+KzDEU69eOGw+KxCw+GjTliK0MHhK+OxLg69WhhqFDC4LC4rH5hmGOxOEyvKMswmNzjOcfl+UYDHY/Dd+WZfWzXH4XL8POlTq4qrCjCdZzUIubsrQpU62IxFWTahh8Hg6GJzDHYiVLBZdhMXjsRh8NV0PhT8RdE+MHwu+G3xa8NWuq2Phz4o+AfB3xF8P2WuwWltrdnonjbw7p3iXSrXWLbT77U7C31W3sNTgi1CCy1LULSK7SaO2vruFUnk+oz7J8Tw9nmc5BjalCrjMjzXMcnxdXCyqTw1TE5ZjK2Cr1MPOrSoVZ0J1aE5UZVaNGpKm4udKnJuC+Y4ezvCcS5BkfEeAp4ilgeIMnyzO8HSxcKdPF0sJmuCoY/D08TCjVr0YYiFGvCNaFKvWpxqKShVqRSnLvq8o9g+AP2N/+Tiv+CsX/AGf/APDj/wBdZf8ABNOgA/4KWf8AJuvw5/7P/wD+CTv/AK9N/Y3oA+1fHR0FfBPjE+KtGm8ReGB4W8Qf8JH4ft/C2p+OZ9d0L+ybv+19Gh8FaLpWuax4vl1PT/tFlH4X0rRNY1LX2nGlWWl39zdxWsvzXGdCni+EOKcJVwc8wp4zh7OcHPAU8FVzGeNWLy/EYf6osBQo4iri1iPa+ylQjRq+0jNxlBxbO/KniY5plssFiVg8ZHH4SWFxcsbSy5YXExxFOVDEPMK9bD0cD7Cqo1PrlXEUKeG5fbTrU4wc18Af8EedK1rw3/wTK/Yz8HeJvAvxA+GnifwJ8FvDngbxL4E+J/wz8d/CLxj4Z17wmbjRdT0vUPA/xG8N+FPEthbQXNo/9l3zaOmk6xpptdV0K81DSLuzvJv0LPpSqTyGc8RSxNVcE8A4fE1KWLoYyccdl/BeRZZmVDE1KNWs4YrD5jgsXQr060o1een7Rp06lOpPz8Q8vfEHHTyjDxwuUVvErxJzDJaVHA1MvwbyHOuOc/zzh+pgMNOhh4U8FVyPM8uqUaNKnFYJynl1enh8bg8VhKH6U14QwoAKACgD4A/4Jp/8m6/Eb/s//wD4Kxf+vTf2yKAPv+gD8uP2mPFMth/wUq/4J528fgD4467pegeEP2mLXxN438G/s8fHjx38K/CFz8WdD8F+GfAdv40+L/gv4c6/8LPBk2q6v4S1xb+PxT4w0h/DWnw2Ot+KRouia1omo6jxcPUKtXjfifEcqoYaXhJnWQ08TjJQwGGr5vLj3w24vhgcLiMbLD0cVWq5DwznWIovDVKtOtjcJTyWlOed47L8uxV581R4SyCb/fSfixw/jpYbBp4/HUcBheBPEnhrEY/E5dgvrGPwuApZzxxw3h5Y3E4alhfYYnMMxVV5bkHEGMyv9R67SD4A/wCCsX/KLL/gpZ/2YB+2R/6zr8RqAPv+gCpqF7Dpthe6jcJdyW9haXN7PHYWF/qt/JDawvPKllpel215qepXbJGy21hp1pdX95MUt7S2nuJI4mwxOIp4TDYjFVY150sNQq4ipHDYbE43Eyp0acqk44fB4OlXxeLryjFqlhsLQrYmvUcaVClUqzjB60KM8RXo4em6UalerTowlXr0MLQjOrNQi62JxNSjhsPSUpJ1K+Iq0qFGF6lWpCnGUl+Xn7O37Rnw+/aY/acg+Jd/8Dv2wPCvj/RfDfj/AOF3wksfjP8AsV/tW/Anwp8L/hFcatpetePPHniD4ifHL4NfDb4aP4t+OPibwR4CW28KeGPG3jLxna+DtF+HVva+GNEu1+Mp0v0Mrp1aWXZnUhVw9LGZ3l+TZpn0JV6NP6lg8qr1YZDwnh515wrZlmeAr8S5hmXEbyig8txGbSxOFo4nP8i4K4f4uzbhx2Kdavg8NKnjKOX5TmeaUMtowli60M/zTExpYStxVmOFwsquVYHB4LLMvx1HgetnHsc5y3I874ieKxOWZ74hYzgHJP1OrmOk+AP2yP8Ak4r/AIJO/wDZ/wD8R/8A11l/wUsoA+/6APKPjd8QPCHwz+GXifxR47sPivqXhYWsWiarbfBL4afHH4s/E3yvEc8ehJN4Y8Ifs4eFPGfxkN1byX6zy+IPBuifbfCsEcniKbUtHttNl1O14Mxhh8Th5ZbiXj40s2hictdTLqmZ4TEUo1sFiqlWpHNcplRxeSzjQo1Vhs1hjMBUoY14WnhMZTzGtg41OvButSq/XKP1Rzy90cbyYyOBrUqjp4mhThD6jmCqUMzTq1abrYD6vi41cMq9TEYeeDo4mUPjH/gmZ8KNY+EHw1+NmgaIPjJZ/s6eIf2h/GfxG/ZT0T9omz8Y2vxx0r4Y/E7w74P+IHxBl+ILfFew074+yXOuftI+Jfjhruix/tHx3fx0i0PULFvGeoXFvNo0Nt9Jia1aeQcI4bMp4WrneW5Ri8sxUsHDLKVGhkOXZ3meB4Cy+rRyNRyOGLwPAmG4dhNZbSw9elhZ4PBcSYalxng+JZVPPr18Njs7zHMsBTzSnQxeByWjm1TNJYqUMx4qy7DVsuzfNcneZ1a2cxyaplWG4dyqSzJ4fD1s/wAn4gxvDOEfBmL4azLM/wBJa8o1PgD4jf8AKU39jf8A7MA/4KWf+tFf8EnaAPv+gD89f26PgZ+0/wDFTTR4o+BHxd+CPhXTfA3ws+LEMXw6+LH7LfxC/aB1XXvG/ijwrqWgxeKPAuq+Bv2qPgB/wjPjCLwjea74H8PveeGPHMltb+MfERghmXVZNPb47i/C4yfDvH7dGrm2FzPgPMcnweT5bQrUM9UqmFzmtneGy3HqWYYarX4mi+H8HhlU4exeMyytkso4OtiMJnmbZbifpeHMTRjm/C1FV4Zc6PFmVZjj8bja0J5RWhg8wyrEZNPNMIvqNepgshx2Hxeb1cPPOKWX4zFyy7MK+HoZnw7kuZ4P079gLwt8VPBP7Ev7KnhH413WkXHxK8O/AT4XaR4it9G+HfiP4VJogsfB+kwaV4W1fwP4s8b/ABC1/SvFXhLRk0/w14xub7xFF/bPirStY1u28OeDbXUYPCWi/sniLisJjuO+LsXgq9HGU8RxFnFarmGFr0q+AzTF1MfiJY3Ncq9lzxw+UZninVx2VYKWLzOrgcBXw+Eq5xm9SjLMcT+S+HGFr4HgLgzCVsHi8tjhuFOGsPh8pzKE1m+UUKGQ5dRWV5zWlRwaxea4KrTq0cbiYZXk8J1U4f2XhJU5Rl9eV8YfanwB+xv/AMnFf8FYv+z/AP4cf+usv+CadAHQf8FDfA3xM8e/s3WFn8Ivht4g+L/jbwX+0/8AsH/GuP4beE9c+HvhzxV4s8K/s9ft0/s5fHj4iaf4Z1b4r+Nvhx8O4vEEXw7+HHiq+0a18VeOvC+napqNrbaWNVgub23DAHP/APDZH7RX/SJ39v8A/wDDjf8ABLL/AOmWUAH/AA2R+0V/0id/b/8A/Djf8Esv/pllAB/w2R+0V/0id/b/AP8Aw43/AASy/wDpllAB/wANkftFf9Inf2//APw43/BLL/6ZZQAf8NkftFf9Inf2/wD/AMON/wAEsv8A6ZZQAf8ADZH7RX/SJ39v/wD8ON/wSy/+mWUAfMH7Inxe/a0+APwp8WeBfGP/AASt/bf1LV9d/af/AG3fjXZ3Hhn4o/8ABMO806Pwr+0p+2h8ff2jPAun3M2qf8FF9GuU8QaT4J+Knh7S/FlrFZzadY+KrPWbHR9V17SLex1zUQD6f/4bI/aK/wCkTv7f/wD4cb/gll/9MsoAP+GyP2iv+kTv7f8A/wCHG/4JZf8A0yygA/4bI/aK/wCkTv7f/wD4cb/gll/9MsoA+YP23fi9+1p+0p+xf+13+zn4F/4JW/tv6T42+P37MHx9+Cng7VPFnxR/4Jh2PhXTfFXxU+FPizwL4e1DxNfaP/wUX17V7Pw/Z6vrtncazdaXoes6jb6dHczWOlajcpFZzAH0/wD8NkftFf8ASJ39v/8A8ON/wSy/+mWUAH/DZH7RX/SJ39v/AP8ADjf8Esv/AKZZQAf8NkftFf8ASJ39v/8A8ON/wSy/+mWUAH/DZH7RX/SJ39v/AP8ADjf8Esv/AKZZQB8wfH34vftafFT4rfsReOvD3/BK39t+z0j9mv8Aaf8AFnxr8dW+s/FH/gmHb6jq3hXXv2L/ANrv9nOz0/wnDY/8FF9Rtr7xBH42+P3g7VLm11i80HTk8K6b4mvotVm1ez0vQ9ZAPp//AIbI/aK/6RO/t/8A/hxv+CWX/wBMsoAP+GyP2iv+kTv7f/8A4cb/AIJZf/TLKAD/AIbI/aK/6RO/t/8A/hxv+CWX/wBMsoAP+GyP2iv+kTv7f/8A4cb/AIJZf/TLKAPmDxZ8Xv2tNd/bQ+AX7Rln/wAErf234/BPwr/Zg/a7+CniHS7n4o/8Ew08VXnir4/fFb9iLx14O1DRrGL/AIKLzaRceH9N0j9mvx1b+Jrq+1zTtRs9R1bwnDpelazbX2sXmggH0/8A8NkftFf9Inf2/wD/AMON/wAEsv8A6ZZQAf8ADZH7RX/SJ39v/wD8ON/wSy/+mWUAH/DZH7RX/SJ39v8A/wDDjf8ABLL/AOmWUAH/AA2R+0V/0id/b/8A/Djf8Esv/pllAB+wv4f+Lv8Awlv7dvxb+LfwK+IH7O//AA0R+1/4d+KXw9+HvxS8S/BPxN47/wCEE8M/sO/sXfAGbXddm+APxb+Nvw/0z+0/iB8EvHkemaZH49u9Y/se00/UtS0/Tf7St7egD7/oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD//2Q==" alt="" />

这个序列:1 3 4 2 的逆序对数量是 2 ,即(3,2)和(4,2),所以答案是 2。

md其实两个数组排序的位置一一对应时最小都已经想到了····那个逆序对竟然想不到···哎·····

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int N=1e5+;
const int mod=;
int n,c[N],temp[N];
long long ans=;
struct node
{
int w;
int id;
}a[N],b[N];
int R()
{
int f=;
char c;
for(c=getchar();c<''||c>'';c=getchar());
for(;c<=''&&c>='';c=getchar())
f=(f<<)+(f<<)+c-'';
return f;
}
bool comp(node x,node y)
{
return x.w<y.w;
}
inline void merge(int x,int mid,int y)
{
int i=x,j=mid+,head=x;
while(i<=mid&&j<=y)
{
if(c[i]<=c[j])
temp[head++]=c[i++];
else
{
ans=(ans+mid-i+)%mod;
temp[head++]=c[j++];
}
}
while(i<=mid) temp[head++]=c[i++];
while(j<=y) temp[head++]=c[j++];
for(i=x;i<=y;i++)
c[i]=temp[i];
}
inline void mergesort(int a,int b)
{
if(a==b) return;
int mid=(a+b)/;
mergesort(a,mid);
mergesort(mid+,b);
merge(a,mid,b);
}
int main()
{
//freopen("a.in","r",stdin);
n=R();
for(int i=;i<=n;i++)
{
a[i].w=R();
a[i].id=i;
}
for(int i=;i<=n;i++)
{
b[i].w=R();
b[i].id=i;
}
sort(a+,a+n+,comp);
sort(b+,b+n+,comp);
for(int i=;i<=n;i++)
c[b[i].id]=a[i].id;
mergesort(,n);
cout<<ans<<endl;
return ;
}

刷题总结——火柴排队(NOIP2013)的更多相关文章

  1. luoguP1966 火柴排队(NOIP2013)(归并排序)

    luogu P1966 火柴排队 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include ...

  2. OI 刷题记录——每周更新

    每周日更新 2016.05.29 UVa中国麻将(Chinese Mahjong,Uva 11210) UVa新汉诺塔问题(A Different Task,Uva 10795) NOIP2012同余 ...

  3. 【刷题】洛谷 P1966 火柴排队

    题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi)^2 其中 ai 表示 ...

  4. [树状数组+逆序对][NOIP2013]火柴排队

    火柴排队 题目描述 涵涵有两盒火柴,每盒装有n根火柴,每根火柴都有一个高度.现在将每盒中的火柴各自排成一列,同一列火柴的高度互不相同,两列火柴之间的距离定义为:∑ (ai-bi)2,i=1,2,3,. ...

  5. [NOIP2013提高&洛谷P1966]火柴排队 题解(树状数组求逆序对)

    [NOIP2013提高&洛谷P1966]火柴排队 Description 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相 ...

  6. LOJ2609. NOIP2013 火柴排队 【树状数组】

    LOJ2609. NOIP2013 火柴排队 LINK 题目大意: 给你两个数列,定义权值∑i=1(ai−bi)^2 问最少的操作次数,最小化权值 首先需要发现几个性质 最小权值满足任意i,j不存在a ...

  7. 洛谷P1966 [NOIP2013提高组Day1T2]火柴排队

    P1966 火柴排队 题目描述 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相同, 两列火柴之间的距离定义为: ∑(ai-bi) ...

  8. Noip刷题计划

    写在前面 去年也想刷10年NOIP来着..结果刷到13年就没动力了233... 今年一定要完成目标啊!! "愿你明日重生,醒时心存冬阳" 2018年 题目 首次得分 出错原因 考点 ...

  9. NOIP 2013 火柴排队

    洛谷 P1966 火柴排队 洛谷传送门 JDOJ 2227: [NOIP2013]火柴排队 D1 T2 JDOJ传送门 Description 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高 ...

随机推荐

  1. IOS自动化测试之UIAutomation

    通过Xcode工具编写运行测试脚本 1.当你有了一个应用的源代码之后,在Xcode工具中,首先选中被测应用,然后点击菜单栏中的“Product-Profile”,则会弹出Instruments工具,在 ...

  2. Hyperledger Fabric on SAP Cloud Platform

    今天的文章来自Wen Aviva, 坐Jerry面对面的程序媛. Jerry在之前的公众号文章<在SAP UI中使用纯JavaScript显示产品主数据的3D模型视图>已经介绍过Aviva ...

  3. UVA1663 Purifying Machine (匈牙利算法,二分图最大匹配)

    模版集合个数减少是因为匹配串集合中没被匹配过的一对串匹配了.所以就是找一个二分图最大匹配. 因为集合X和Y是不好分开的,但是可以直接跑,两个集合都会跑一遍,所以一个匹配会被算两次,返回的时候除以2就行 ...

  4. 2890: C--去掉+86

    2890: C--去掉+86 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 210  Solved: 91[Submit][Status][Web Bo ...

  5. 新数据的GT列表

    制作新数据集时需要重新制作train_GT,test_GT 代码: dic = {} with open('/home/bnrc/all_image_GT.txt','r') as file: for ...

  6. robotframework接口测试实例

    *** Settings *** Library Collections Library RequestsLibrary *** Test Cases *** test Create Session ...

  7. noj-1102-黑白图像

    1 //题目地址:http://acm.njupt.edu.cn/acmhome/problemdetail.do?method=showdetail&id=1102              ...

  8. linux or msys2设置网络代理

    在文件 .bashrc 中添加 export http_proxy="proxy IP:port" 如 export http_proxy="192.168.0.1:80 ...

  9. Jarvis OJ-Smashes

    栈溢出之利用-stack-chk-fail from pwn import * old_flag_addr = 0x600d20 new_flag_addr = 0x400d20 #p = proce ...

  10. HTML5服务器发送事件(Server-Send Events)

    HTML5服务器发送事件是允许获得来自服务器的更新. server-sent事件-单向传递消息,表示网页自动获取来自服务器的更新. 其中有一个重要的对象,eventsource对象是用来接收服务器发送 ...