Problem:

Codeforces 1139D

Analysis:

After ACing E, I gave up D and spent the left 30 minutes chatting with Little Dino.

Let \(f[n]\) be the expected number of steps needed to make the greatest common divisor (gcd) become \(1\) when the gcd is \(n\) now, and \(g(n,d)\) be the number of \(x(x\in[1,m])\) that \(gcd(x, n)=d\) . So we have:

\[f[n]=1+\sum_{d|n}\frac{f[d]\cdot g(n, d)}{m}
\]

To make it easy, multiply \(m\) to the equation:

\[mf[n]=m+\sum_{d|n}f[d]\cdot g(n, d)
\]

Notice that \(d\) can be \(n\), and \(g(n,n)\) is \(\lfloor\frac{m}{n}\rfloor\), so we have:

\[(m-\lfloor\frac{m}{n}\rfloor)f[n]=m+\sum_{d|n,d\neq n}f[d]\cdot g(n, d)
\]

Now the problem become how to calculate \(g(n,d)\). According to the defination,

\[\begin{aligned}
g(n, d)&=\sum_{i=1}^m[gcd(n, i)=d]\\
&=\sum_{i=1}^{\lfloor\frac{m}{d}\rfloor}[gcd(\frac{n}{d},i)=1]\\
&=\sum_{i=1}^{\lfloor\frac{m}{d}\rfloor}\epsilon\left(gcd(\frac{n}{d},i)\right)\\
\end{aligned}
\]

where \(\epsilon(x)=\begin{cases}1\ (x=1)\\0\ \mathrm{otherwise}\end{cases}\) .

According to the Mobius Theorem ( \(\mu * 1 = \epsilon\) ) :

\[\begin{aligned}
g(n,d)&=\sum_{i=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{t|\frac{n}{d},t|i}\mu(t)\\
&=\sum_{t|\frac{n}{d}}\mu(t)\cdot \lfloor \frac{m}{dt} \rfloor
\end{aligned}
\]

Let's return to \(f[n]\):

\[(m-\lfloor\frac{m}{n}\rfloor)f[n]=m+\sum_{d|n,d\neq n}f[d]\sum_{t|\frac{n}{d}}\mu(t)\cdot \lfloor \frac{m}{dt} \rfloor
\]

Preprocess the divisors of all integer \(x(x\in[1,m])\) and then calculate \(f[n]\) as the equation above directly. Because the number of divisors of most integers is very small ( for integers not more than \(100000\), the maximum is \(128\) and the total number is about \(10^6\) to \(2\times 10^6\)) , so it won't TLE.

At last, the answer is:

\[ans=1+\sum_{i=1}^{m}\frac{f[i]}{m}
\]

Code:

#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <vector>
using namespace std; namespace zyt
{
typedef long long ll;
const int N = 1e5 + 10, p = 1e9 + 7;
vector<int> fac[N];
int n, f[N], pcnt, prime[N], mu[N];
bool mark[N];
void init()
{
for (int i = 1; i <= n; i++)
for (int j = 1; j * j <= i; j++)
if (i % j == 0)
{
fac[i].push_back(j);
if (j * j != i)
fac[i].push_back(i / j);
}
mu[1] = 1;
for (int i = 2; i <= n; i++)
{
if (!mark[i])
prime[pcnt++] = i, mu[i] = p - 1;
for (int j = 0; j < pcnt && (ll)i * prime[j] <= n; j++)
{
int k = i * prime[j];
mark[k] = true;
if (i % prime[j] == 0)
{
mu[k] = 0;
break;
}
else
mu[k] = p - mu[i];
}
}
}
int power(int a, int b)
{
int ans = 1;
while (b)
{
if (b & 1)
ans = (ll)ans * a % p;
a = (ll)a * a % p;
b >>= 1;
}
return ans;
}
int inv(const int a)
{
return power(a, p - 2);
}
int work()
{
scanf("%d", &n);
init();
f[1] = 0;
int ans = 0;
for (int i = 2; i <= n; i++)
{
for (int j = 0; j < fac[i].size(); j++)
{
int d = fac[i][j];
if (d == i)
continue;
int tmp = 0;
for (int k = 0, size = fac[i / d].size(); k < size; k++)
{
int t = fac[i / d][k];
tmp = (tmp + (ll)mu[t] * (n / d / t) % p) % p;
}
f[i] = (f[i] + (ll)tmp * f[d] % p) % p;
}
f[i] = (ll)(f[i] + n) * inv(n - n / i) % p;
}
for (int i = 1; i <= n; i++)
ans = (ans + f[i]) % p;
printf("%d", int(((ll)ans * inv(n) % p) + 1) % p);
return 0;
}
}
int main()
{
return zyt::work();
}

【Codeforces1139D_CF1139D】Steps to One (Mobius_DP)的更多相关文章

  1. 【CF1139D】Steps to One(动态规划)

    [CF1139D]Steps to One(动态规划) 题面 CF 你有一个数组,每次随机加入一个\([1,n]\)的数,当所有数\(gcd\)为\(1\)时停止,求数组长度的期望. 题解 设\(f[ ...

  2. 【贪心】codeforces D. Minimum number of steps

    http://codeforces.com/contest/805/problem/D [思路] 要使最后的字符串不出现ab字样,贪心的从后面开始更换ab为bba,并且字符串以"abbbb. ...

  3. Python高手之路【三】python基础之函数

    基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...

  4. 看懂SqlServer查询计划【转】

    原文链接:http://www.cnblogs.com/fish-li/archive/2011/06/06/2073626.html 开始 SQL Server 查找记录的方法 SQL Server ...

  5. 【故障处理】ORA-28040: No matching authentication protocol

    [故障处理]ORA-28040: No matching authentication protocol 1.1  BLOG文档结构图 1.2  前言部分 1.2.1  导读和注意事项 各位技术爱好者 ...

  6. 【ZZ】 移位贴图 Displacement Mapping

    http://blog.csdn.net/huazai434/article/details/5650629 说明:该技术需要VS3.0的支持!!! 一,移位贴图类似于地形渲染.不过由于移位纹理可以做 ...

  7. 【Android测试】【随笔】模拟双指点击

    ◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/5258660.html 手势 看到这个标题,很多人会想一想 ...

  8. 【转载】看懂SqlServer查询计划

    看懂SqlServer查询计划 阅读目录 开始 SQL Server 查找记录的方法 SQL Server Join 方式 更具体执行过程 索引统计信息:查询计划的选择依据 优化视图查询 推荐阅读-M ...

  9. 【工具】NS2安装记录

    献给同样为了NS2抓破了头皮的同志们. 1, Get Started: http://www.isi.edu/nsnam/ns/ns-build.html#allinone Build by piec ...

随机推荐

  1. Redis 事务及其应用

    参考: http://www.runoob.com/redis/redis-transactions.html https://www.cnblogs.com/qlshine/p/5958504.ht ...

  2. awk基本语法

    1 awk处理的对象 1.1 record awk处理时,默认会将文件按照换行符,分隔成record.默认分隔符是换行符. 1.2 filed 对于每个record,awk自动又分隔成filed.默认 ...

  3. redis13-----配置文件

    ==配置文件全解=== ==基本配置 daemonize no 是否以后台进程启动 databases 创建database的数量(默认选中的是database ) #刷新快照到硬盘中,必须满足两者要 ...

  4. p1199八数码问题

    oj上简化的八数码问题,最强的数据仅仅是20步: 根据曼哈顿距离构造启发函数: 主算法:IDA*:(使用方法好像不太对......) 未用位运算优化: #include<iostream> ...

  5. CentOS 7中ip命令将逐渐取代 ifconfig

    首先看下图: 要安装ip,请点击这里下载iproute2套装工具 .不过,大多数Linux发行版已经预装了iproute2工具. 你也可以使用git命令来下载最新源代码来编译: $ git clone ...

  6. CGAffineTransform属性

    transform我们一般称为形变属性,其本质是通过矩阵变化改变控件的大小.位置.角度等,这里我们通过一个例子来看一下具体的操作,在下面的例子中我们也会看到UIImageView控件的常用操作. - ...

  7. OpenCV坐标系与操作像素的四种方法

    像素是图像的基本组成单位,熟悉了如何操作像素,就能更好的理解对图像的各种处理变换的实现方式了. 1.at方法 第一种操作像素的方法是使用"at",如一幅3通道的彩色图像image的 ...

  8. servlet的<url-pattern>

    ① 完全匹配 <url-pattern>/test/list.do</url-pattern> ② 路径匹配 <url-pattern>/*</url-pat ...

  9. 关于return

    return ;  相当于执行完跳转url后停止,return无返回值仅作停止作用,是指停止当前方法,是方法的终点 return null ;  代表引用类型的空值

  10. bzoj2748音量调节——背包

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2748 怎么会有这样的省选题... 代码如下: #include<iostream> ...