描述

且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了!

等等,这段故事为何似曾相识?这就要从平行宇宙理论说起了………总而言之,在另一个宇宙中,小Ho面临的问题发生了细微的变化!

小Ho现在手上有M张奖券,而奖品区有N种奖品,分别标号为1到N,其中第i种奖品需要need(i)张奖券进行兑换,并且可以兑换无数次,为了使得辛苦得到的奖券不白白浪费,小Ho给每件奖品都评了分,其中第i件奖品的评分值为value(i),表示他对这件奖品的喜好值。现在他想知道,凭借他手上的这些奖券,可以换到哪些奖品,使得这些奖品的喜好值之和能够最大。

提示一: 切,不就是01变成了0K么

提示二:强迫症患者总是会将状态转移方程优化一遍又一遍

提示三:同样不要忘了优化空间哦!

输入


每个测试点(输入文件)有且仅有一组测试数据。

每组测试数据的第一行为两个正整数N和M,表示奖品的种数,以及小Ho手中的奖券数。

接下来的n行描述每一行描述一种奖品,其中第i行为两个整数need(i)和value(i),意义如前文所述。

测试数据保证

对于100%的数据,N的值不超过500,M的值不超过10^5

对于100%的数据,need(i)不超过2*10^5, value(i)不超过10^3

输出


对于每组测试数据,输出一个整数Ans,表示小Ho可以获得的总喜好值。

样例输入

5 1000
144 990
487 436
210 673
567 58
1056 897

样例输出

5940

完全背包的动规方程为

for i: 1 ~ n
for j: 0 ~ m //这一层动规可以利用这一层的结果
if j > cost[i]
dp[i][j]=dp[i-1][j] //防止断层
else
dp[i][j]=max(dp[i-1][j],dp[i-1][j-cost[i]]+value[i]

可以看出,可以将这个方程修改为一维的

for i: 1 ~ n
for j: 0 ~ m //这一层动规可以利用这一层的结果
dp[j]=max(dp[j],dp[j-cost[i]]+value[i]

二维版

import java.io.*;
import java.util.*; public class Main {
static final int N=(int)1e5+10;
static int dp[][]=new int[505][N],
a[][]=new int[N][2];
public static void main(String[] args){
Scanner sc=new Scanner(new InputStreamReader(System.in));
int n=sc.nextInt(),m=sc.nextInt();
for(int i=1;i<=n;i++) {
for(int j=0;j<2;j++) {
a[i][j]=sc.nextInt();
}
}
for(int i=0;i<=m;i++) dp[0][i]=0;
for(int i=1;i<=n;i++) {
for(int j=0;j<=m;j++) {
if(j<a[i][0]) dp[i][j]=dp[i-1][j];
else dp[i][j]=Math.max(dp[i-1][j],dp[i][j-a[i][0]]+a[i][1]);
}
}
int ans=0;
for(int i=0;i<=m;i++) ans=Math.max(ans, dp[n][i]);
System.out.println(ans);
sc.close();
}
}

一维版

import java.io.*;
import java.util.*; public class Main {
static final int N=(int)1e5+10;
static int dp[]=new int[N],
a[][]=new int[N][2];
public static void main(String[] args){
Scanner sc=new Scanner(new InputStreamReader(System.in));
int n=sc.nextInt(),m=sc.nextInt();
for(int i=1;i<=n;i++) {
for(int j=0;j<2;j++) {
a[i][j]=sc.nextInt();
}
}
for(int i=0;i<=m;i++) dp[i]=0;
for(int i=1;i<=n;i++) {
for(int j=a[i][0];j<=m;j++) {
dp[j]=Math.max(dp[j],dp[j-a[i][0]]+a[i][1]);
}
}
System.out.println(dp[m]);
sc.close();
}
}

【HIHOCODER 1043】题目1 : 完全背包的更多相关文章

  1. hihoCoder #1043 : 完全背包(板子题)

    #1043 : 完全背包 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的 ...

  2. hihoCoder 1043 完全背包 (dp)

    http://hihocoder.com/problemset/problem/1043 动态转移方程 :for v=cost..V f[v]=max(f[v],f[v-c[i]]+w[i]); #i ...

  3. hihocoder 1043 完全背包

    #1043 : 完全背包 时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的 ...

  4. hihocoder第七周 完全背包模板题

    时间限制:20000ms 单点时限:1000ms 内存限制:256MB 描述 且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了! 等等,这段故事为 ...

  5. DP大作战—组合背包

    题目描述 组合背包:有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包). DD大牛的伪代码 for i = 1 to N if 第i件物品属 ...

  6. Codevs 3269 混合背包(二进制优化)

    3269 混合背包 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 传送门 题目描述 Description 背包体积为V ,给出N个物品,每个物品占用体积为V ...

  7. 【DP_背包专题】 背包九讲

    这段时间看了<背包九讲>,在HUST VJUDGE上找到了一个题单,挑选了其中16道题集中做了下,选题全部是HDU上的题,大多是简单题.目前做了点小总结,大概提了下每道题的思路重点部分,希 ...

  8. Ural 1043 Cover the Arc

    题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1043 题目大意:一个2000*2000方格坐标,x,y范围都是[-1000,1000]. ...

  9. codevs 3269 混合背包

    题目描述 Description 背包体积为V ,给出N个物品,每个物品占用体积为Vi,价值为Wi,每个物品要么至多取1件,要么至多取mi件(mi > 1) , 要么数量无限 , 在所装物品总体 ...

随机推荐

  1. iOS 将WKWebView内的HTML打印为PDF

    使用的webview为WKWebView,核心部分代码(Swift 4): // 创建打印渲染 let printPageRenderer:PDFRender = PDFRender() // 获取渲 ...

  2. icomoon字体使用

    如何灵活利用免费开源图标字体-IcoMoon篇 by zhangxinxu from http://www.zhangxinxu.com本文地址:http://www.zhangxinxu.com/w ...

  3. 当css样式表遇到层2

    9.定制层的display属性:层的表现是通过框这种结构来实现的.框可以是块级对象也可以是行内对象. Display属性就是用来控制其中内容是块级还是行级.定义为block则为kuai块级,inlin ...

  4. Mysql中的索引问题

    索引的用途 提高查询的效率,相当于在字典中建立的字母表或者偏旁部首表,这样查询当然比一行一行查询要快的多 每个存储引擎可以建立索引的长度是不一样的,但每个表至少支持16个索引,总的索引长度至少为256 ...

  5. nodejs+multiparty 文件上传

    通过表单提交上传文件:     html代码 <form action="/uploadFile" method="post" enctype=" ...

  6. Java&Xml教程(十)XML作为属性文件使用

    我们通常会将Java应用的配置参数保存在属性文件中,Java应用的属性文件可以是一个正常的基于key-value对,以properties为扩展名的文件,也可以是XML文件. 在本案例中,將会向大家介 ...

  7. Android Studio Terminal 不是内部或外部命令,也不是可运行程序或批处理文件

    1.Android Studio Terminal 命令行无效的问题 在Android Studio中自带了命令行终端Terminal,但是我们在输入命令时经常会发现:“XXX”不是内部或外部命令,也 ...

  8. CocoaPods安装遇到的坑。

    //官方推荐地址 CocoaPods :http://code4app.com/article/cocoapods-install-usage cooped的安装  $(inherited) 报pod ...

  9. Delphi定时器控件TTimer“一睡不醒”问题研究

    1,试验1—基础代码 1.1页面控件与代码 定时器 Timer1 Timer_work Interval 1000 1500 Enabled True True Ontimer事件 then exit ...

  10. 如何使用xftp工具在Windows与Linux之间传输文件

    如何使用xftp工具在Windows与Linux之间传输文件 整理者:vashon 声明:感谢开源社区 xftp工具是一款SFTP,FTP文件传输软件,可在Windows pc与Unix/Linux之 ...