题目描述

一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的。棍子可以被一台机器一个接一个地加工。机器处理一根棍子之前需要准备时间。准备时间是这样定义的:

第一根棍子的准备时间为1分钟;

如果刚处理完长度为L,宽度为W的棍子,那么如果下一个棍子长度为Li,宽度为Wi,并且满足L>=Li,W>=Wi,这个棍子就不需要准备时间,否则需要1分钟的准备时间;

计算处理完n根棍子所需要的最短准备时间。比如,你有5根棍子,长度和宽度分别为(4, 9),(5, 2),(2, 1),(3, 5),(1, 4),最短准备时间为2(按(4, 9)、(3, 5)、(1, 4)、(5, 2)、(2, 1)的次序进行加工)。

输入输出格式

输入格式:

第一行是一个整数n(n<=5000),第2行是2n个整数,分别是L1,W1,L2,w2,…,Ln,Wn。L和W的值均不超过10000,相邻两数之间用空格分开。

输出格式:

仅一行,一个整数,所需要的最短准备时间。

这道题...开始贪心炸掉了。

我们要维护两个变量的单调性,一个是宽度,一个是长度。

我们首先便可以随意对一个变量进行排序,之后再求出另一变量的最长不上升子序列个数即可。

根据dilworth定理,一个序列的最长不上升子序列个数=最长上升子序列的长度。

nlogn大法吼啊。

于是,我们便愉快地AC。

code

 #include<cstdio>
#include<algorithm> using namespace std; int n,tot;
int s[];
struct stick{
int len,wid;
}a[]; bool cmp(stick x,stick y)
{
return x.len>y.len;
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d",&a[i].len,&a[i].wid);
sort(a+,a++n,cmp);
s[]=a[].wid;tot=;
for(int i=;i<=n;i++)
{
if(a[i].wid>s[tot]) s[++tot]=a[i].wid;
else
{
int pos=lower_bound(s+,s+tot+,a[i].wid)-s;
s[pos]=a[i].wid;
}
}
printf("%d",tot);
return ;
}
 

Luogu P1233 木棍加工 【贪心/LIS】的更多相关文章

  1. [Luogu] P1233 木棍加工

    题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理 ...

  2. 洛谷P1233 木棍加工题解 LIS

    突然发现自己把原来学的LIS都忘完了,正好碰见这一道题.|-_-| \(LIS\),也就是最长上升子序列,也就是序列中元素严格单调递增,这个东西有\(n^{2}\)和\(nlog_{2}n\)两种算法 ...

  3. P1233 木棍加工 dp LIS

    题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理 ...

  4. 洛谷 P1233 木棍加工 解题报告

    P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...

  5. P1233 木棍加工

    P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...

  6. 洛谷P1233 木棍加工【单调栈】

    题目:https://www.luogu.org/problemnew/show/P1233 题意: 有n根木棍,每根木棍有长度和宽度. 现在要求按某种顺序加工木棍,如果前一根木棍的长度和宽度都大于现 ...

  7. 洛谷P1233 [木棍加工]

    主要思路: 这道题一眼看过去就可以贪心.. 首先可以按L排序.. 显然排序之后我们就可以抛开L不管了.. 然后就可以愉快的贪心了.. 细节: 这道题可以看成用 最少的合法序列(详见原题) 装下所有木棍 ...

  8. 洛谷 P1233 木棍加工

    题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理 ...

  9. P1233木棍加工

    这个题被算法标签标为DP,但其实可能只是用dp求子序列,,(n方) 给出l与w,只要是l与w同时满足小于一个l与w,那么这个木棍不需要时间,反之需要1.看到这个题,首先想到了二维背包,然后发现没有最大 ...

随机推荐

  1. 无线网卡与本地连接不能同时使用&一机多网络的优先级设置

    无线网卡与本地连接不能同时使用&一机多网络的优先级设置 2012-05-30 20:39 初次记录 2012-08-09 10:32 修订 题目中的两个问题,其实都可以归结为一个问题,即网络优 ...

  2. linux定时重启节约内存

    linux服务器上运行的一些程序,比较消耗内存,需要定时重启,进行内存定期释放 0 2 * * *  sudo /sbin/reboot && echo $(date) '重启成功' ...

  3. 系统安全攻防战:DLL注入技术详解

    DLL注入是一种允许攻击者在另一个进程的地址空间的上下文中运行任意代码的技术.攻击者使用DLL注入的过程中如果被赋予过多的运行特权,那么攻击者就很有可能会在DLL文件中嵌入自己的恶意攻击代码以获取更高 ...

  4. 多线程调用COM组件的体会(CoInitialize)

    调用任何COM组件之前,你必须首先初始化COM套件环境,即调用CoInitialize或CoInitializeEx.COM套件环境在线程的生存周期内有效,线程退出前需要调用CoUninitializ ...

  5. ECC数据结构

    在SM2 ECC算法中,有针对签名加密的数据结构,下面对这些结构进行分析 #define ECCref_MAX_BITS 512 #define ECCref_MAX_LEN ((ECCref_MAX ...

  6. Prime Distance(二次筛素数)

    Description The branch of mathematics called number theory is about properties of numbers. One of th ...

  7. 白话空间统计之四:P值和Z值(上):零如果

    本来今天想要讲讲软件操作的,后来发现好像还有好几个重要的指标没有说,干脆等所有说完在讲操作吧.否则操作出来的结果会发现大量的"不明觉厉". 首先是空间统计里面非常神奇的两个值:P值 ...

  8. Visual Studio VS2010 如何修改默认的编辑语言

    1 比如我要把默认是C++的配置改成C#,在工具-导入和导出设置中,重置所有设置 2 这里改成新的语言 3 重置完成

  9. 区分Integer.getInteger和Integer.valueOf、Integer.parseInt() 的使用方法

    Integer类有两个看起来很类似的静态方法,一个是Integer.getInteger(String),另外一个是Integer.valueOf(String).如果只看方法名称的话,很容易将这两个 ...

  10. SQL Server中一些有用的日期sql语句

    SQL Server中一些有用的日期sql语句 1.一个月第一天的 SELECT DATEADD(mm, DATEDIFF(mm,0,getdate()), 0) 2.本周的星期一 SELECT DA ...