题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705

首先分析得题目所求$gcd(i,N)$的取值只可能是$N$的因子,则有$$Ans=\sum_{d|N}d\sum_{i=1}^N[gcd(i,N)==d]$$

$$Ans=\sum_{d|N}d\sum_{i=1}^{\frac{N}{d}}[gcd(i,\frac{N}{d})==1]$$

$$Ans=\sum_{d|N}dφ(\frac{N}{d})$$

我们可以枚举$N$的因子,然后用$O(\sqrt{N})$的时间求φ。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
ll N;
ll Phi(ll x){
int M=floor(sqrt(x));
ll ret=x;
for(int i=;i<=M;i++){
if(x%i==){
ret=ret/i*(i-);
while(x%i==) x/=i;
}
}
if(x>) ret=ret/x*(x-);
return ret;
}
int main(){
scanf("%lld",&N);
int M=floor(sqrt(N));
ll Ans=;
for(int i=;i<=M;i++){
if(N%i==){
Ans+=Phi(N/i)*i;
if((ll)i*i<N) Ans+=Phi(i)*(N/i);
}
}
printf("%lld\n",Ans);
return ;
}

[BZOJ2705][SDOI2012]Longge的问题 数学的更多相关文章

  1. BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】

    BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...

  2. BZOJ2705: [SDOI2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...

  3. 【欧拉函数】BZOJ2705: [SDOI2012]Longge的问题

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N).   Solut ...

  4. BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)

    题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...

  5. bzoj2705: [SDOI2012]Longge的问题 欧拉定理

    题意:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 题解:考虑n的所有因子,假设有因子k,那么对答案的贡献gcd(i,n)==k的个数即gcd(i/k,n/k)== ...

  6. 【数论】【枚举约数】【欧拉函数】bzoj2705 [SDOI2012]Longge的问题

    ∵∑gcd(i, N)(1<=i <=N) =k1*s(f1)+k2*s(k2)+...+km*s(km) {ki是N的约数,s(ki)是满足gcd(x,N)=ki(1<=x< ...

  7. bzoj2705 [SDOI2012]Longge的问题——因数

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 一开始自己想了半天... 有了点思路:遍历 n 的因数 k,每个因数要预处理出 gcd ...

  8. 【bzoj2705】[SDOI2012]Longge的问题

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2507  Solved: 1531[Submit][ ...

  9. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

随机推荐

  1. js中数组遍历的几种方法及其区别

    参考网站: http://www.cnblogs.com/lvmh/p/6104397.html 第一种最常用的:for循环 for(j = 0; j < arr.length; j++) { ...

  2. BZOJ_1563_[NOI2009]诗人小G_决策单调性

    BZOJ_1563_[NOI2009]诗人小G_决策单调性 Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超 ...

  3. 关于return

    return ;  相当于执行完跳转url后停止,return无返回值仅作停止作用,是指停止当前方法,是方法的终点 return null ;  代表引用类型的空值

  4. vs2008工程部署不成功,可能是远程文件路径出现问题

    解决方法: 修改工程属性页的配置属性 调试中的远程可执行文件的路径 部署中的远程目录的路径

  5. iOS---UICollectionView Class Reference---UICollectionView 类参考文档

    UICollectionView 类: Inherits from UIScrollView : UIView : UIResponder : NSObject Conforms to NSCodin ...

  6. Mac系统下源码编译安装MySQL 5.7.17

    1.下载并解压到:/Users/xiechunping/Softwares/mysql-5.7.17下载地址:http://ftp.ntu.edu.tw/pub/MySQL/Downloads/MyS ...

  7. php,c# hamsha1

    #!/usr/bin/php <?php print strtoupper(hash_hmac("sha256", "message", "ke ...

  8. 一篇文章搞定面试中的二叉树题目(java实现)

    最近总结了一些数据结构和算法相关的题目,这是第一篇文章,关于二叉树的. 先上二叉树的数据结构: class TreeNode{ int val; //左孩子 TreeNode left; //右孩子 ...

  9. 2018 年度码云热门项目排行榜 TOP 10

    2016 年度码云热门项目排行榜 TOP 10 是通过开源项目2016年在码云上的 Watch.Star.Fork 数量来评定的榜单.码云平台发展至今,涌现了越来越多优秀的开源项目,越来越多的开源作者 ...

  10. iOS UITextView自适应高度UITextContainerView抖动问题

    在打造一个类似于微信朋友圈评论输入框的时候,需要动态调整输入框的高度, 但是,在调整了UITextView的高度之后,继续输入会导致内容(UITextContainerView里的文字)抖动. scr ...