https://www.zybuluo.com/ysner/note/1248287

定义

对于一个集合\(S\),
\(\min(S)\)表示其第一个出现的元素(\(or\)最小的元素),
\(\max(S)\)表示其最后一个出现的元素(\(or\)最大的元素)。

设\(E(x)\)表示元素\(x\)的期望出现次数(出现时是第几次)。
则有一个不可言妙的公式\[E(\max(S))=\sum_{S'\in S}E(\min(S'))*(-1)^{|S'|+1}\]
至于证明。。。蒟蒻这辈子都不可能会的,挂个证明的链接

用途

  • 对于一个集合\(S\),给出每个元素出现的概率,我们需要求每一个元素都出现至少一次的期望次数(即\(\max(S)\))时,可使用\(min-max\)容斥。

题目

  • [X] [HDU4336]Card Collector
    太板了,不写题解
  • [X] [PKUWC2018]随机游走
    题解

min-max容斥小结的更多相关文章

  1. min-max 容斥

    $\min - \max$ 容斥 Part 1 对于简单的$\min - \max$容斥有一般形式,表达为:$\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1 ...

  2. Min-max 容斥与 kth 容斥

    期望的线性性: \[E(x+y)=E(x)+E(y) \] 证明: \[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \] \[=\sum_i\sum_ji*P(i=x,j ...

  3. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  4. UVa12633 Super Rooks on Chessboard(容斥 + FFT)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess ...

  5. hdu1695:数论+容斥

    题目大意: 求x属于[1,b]和 y属于[1,d]的 gcd(x,y)=k 的方案数 题解: 观察发现 gcd()=k 不好处理,想到将x=x/k,y=y/k 后 gcd(x,y)=1.. 即问题转化 ...

  6. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

  7. [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥

    题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...

  8. 【LOJ2542】【PKUWC 2018】随机游走 min-max容斥 树上高斯消元

    题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...

  9. min-max容斥学习笔记

    min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{ ...

随机推荐

  1. 浅谈IFC

    IFC布局规则: 在一个行内格式化上下文中,盒是一个接一个水平放置的,从包含块的顶部开始 这些盒之间的水平margin,border和padding都有效 盒可能以不同的方式竖直对齐:以它们的底部或者 ...

  2. pygame 方块随机飞舞动画

    import pygame import random # default WIDTH=1280 HEIGHT=1060 FPS=60 sum=0 # set color WHITE=(255,255 ...

  3. 转载:tomcat实现热部署的配置

    tomcat实现热部署的配置   我们实现热部署后,自然就可以通过maven操作tomcat了,所以就需要maven取得操作tomcat的权限,现在这一步就是配置tomcat的可操作权限. 进入tom ...

  4. Mac安装Qt出现错误Could not resolve SDK Path for 'macosx'

    Qt 5.8 + Mac 10.14  qdevice.pri文件里没有网上说的那行应该改的代码,自己写上这句话也没有解决问题 最终解决方案: 在命令行输入:sudo xcode-select -s ...

  5. DemoKit编译过程

    E:\Project_code\EAE\src_rev_24139_A95LYD\Project\DemoKit>make release Checking uITRON - DemoKit r ...

  6. Educational Codeforces Round 41 D. Pair Of Lines(961D)

    [题意概述] 给出平面上的10W个点,要求判断这些点能否被两条直线穿过,即一个点至少在一条直线上. [题解] 思路很快可以想到.取3个不共线的点,它们形成一个三角形:如果有解,其中的一条直线一定与三角 ...

  7. PAT 1125 Chain the Ropes

    Given some segments of rope, you are supposed to chain them into one rope. Each time you may only fo ...

  8. Python基础—面向对象(初级篇)

    一.什么是面向对象编程 面向对象编程(Object Oriented Programming,OOP,面向对象程序设计),python语言比较灵活即支持面向对象编程也支持面向函数式编程. 面向过程编程 ...

  9. 封装的一些常见的JS DOM操作和数据处理的函数.

    //用 class 获取元素 function getElementsByClass(className,context) { context = context || document; if(do ...

  10. vim配置说明20170819

    一.修改-/.vim/colors/guodesert.vim " Vim color file " Maintainer: Hans Fugal <hans@fugal.n ...