(多项式的)因式分解定理(factor theorem)是多项式剩余定理的特殊情况,也就是余项为 0 的情形。

0. 多项式长除法(Polynomial long division)

Polynomial long division - Wikipedia

1. 因式分解定理

Factor theorem

该定理表达的是,多项式 f(x) 存在因子 x−k 当且仅当 f(k)=0(余数为 0,也即 k 是其根)。

对于多项式 f(x)=x3+7x2+8x+2,

  • x−1 是否为其因子?f(1)≠0
  • x+1 是否为其因子?f(−1)=0,故为其因子;

(多项式除法)又有 x3+7x2+8x+2x+1=x2+6x+2,因此 x+1 与 x2+6x+2 均为其因子。

2. 多项式余项定理

Polynomial remainder theorem

举例对于多项式 f(x)=x3−12x2−42,当除数为 x−3 时,商为 x2−9x−27,余项为 −123。也即,f(x)=(x−3)(x2−9x−27)−123。因此 f(3)=−123。

更为一般地,对于二次多项式 f(x)=ax2+bx+c,有如下的等式变换:

f(x)x−r=ax2+bx+cx−r=ax2−arx+arx+bx+cx−r=ax(x−r)+(b+ar)x+cx−r=ax+(b+ar)(x−r)+c+r(b+ar)x−r=ax+b+ar+c+r(b+ar)x−r=ax+b+ar+ar2+br+cx−r

所以:

f(x)=(x−r)(ax+b+ar)+ar2+br+c

(多项式)因式分解定理(Factor theorem)与多项式剩余定理(Polynomial remainder theorem)(多项式长除法)的更多相关文章

  1. DHU 1788 Chinese remainder theorem again 中国剩余定理

    Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  2. HDU 1788 Chinese remainder theorem again 中国剩余定理

    题意: 给定n,AA 以下n个数m1,m2···mn 则有n条方程 res % m1 = m1-AA res % m2 = m2-AA 问res的最小值 直接上剩余定理,嘿嘿 #include< ...

  3. 2019牛客暑期多校训练营(第七场)D Number——实系数多项式因式分解定理

    前置知识 代数基本定理 定理:每个次数 ≥ 1 复系数多项式在复数域中至少有一个跟. 由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算).(只要不断把多项式除以(x-xa),即可 ...

  4. hdu 1788 Chinese remainder theorem again(最小公倍数)

    Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...

  5. Chinese remainder theorem again(中国剩余定理)

    C - Chinese remainder theorem again Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:% ...

  6. 《孙子算经》之"物不知数"题:中国剩余定理

    1.<孙子算经>之"物不知数"题 今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何? 2.中国剩余定理 定义: 设 a,b,m 都是整数.  如果 m ...

  7. POJ 1006 中国剩余定理

    #include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(sca ...

  8. [TCO 2012 Round 3A Level3] CowsMooing (数论,中国剩余定理,同余方程)

    题目:http://community.topcoder.com/stat?c=problem_statement&pm=12083 这道题还是挺耐想的(至少对我来说是这样).开始时我只会60 ...

  9. poj1006中国剩余定理

    Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 103506   Accepted: 31995 Des ...

随机推荐

  1. PhpStorm 本地管理提交码云和GitHub代码仓库

    参考地址:https://www.yflad.cn/1766.html 1:下载Git客户端 2:打开PhpStorm,设置,Version Control → Git.配置git执行文件的路径.gi ...

  2. find命令查找和替换

    find命令查找和替换 语法: find -name '要查找的文件名' | xargs perl -pi -e 's|被替换的字符串|替换后的字符串|g' #查找替换当前目录下包含字符串并进行替换 ...

  3. Intellij idea 生成for循环代码块

    itar 生成array for代码块 for (int i = 0; i < array.length; i++) { = array[i]; } itco 生成Collection迭代 fo ...

  4. 10 Minutes to pandas中文版

    本文是对pandas官方网站上<10 Minutes to pandas>的一个简单的翻译,原文在这里.这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:Cookbook .习惯 ...

  5. UVA - 10825 Anagram and Multiplication

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34594 有一个m位n进制的数,它的特性是这个数依次乘以2,3... ...

  6. Codeforces 938C - Constructing Tests

    传送门:http://codeforces.com/contest/938/problem/C 给定两个正整数n,m(m≤n),对于一个n阶0-1方阵,其任意m阶子方阵中至少有一个元素“0”,则可以求 ...

  7. [bzoj1042][HAOI2008][硬币购物] (容斥原理+递推)

    Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...

  8. hdu 1874 dijkstra 队列实现 比数组高效特别在稀疏图

    参考  http://blog.csdn.net/zhuyingqingfen/article/details/6370561 刘汝佳白皮书 #include<stdio.h> #incl ...

  9. 你的ExcelUtil简单、高效、易扩展吗

    你的ExcelUtil简单.高效.易扩展吗 Author: Dorae Date: 2018年10月23日12:30:15 转载请注明出处 一.背景 最近接到了和Excel导出相关的需求,但是: 项目 ...

  10. ORACLE分区表删除分区数据

    --全删除 ALTER TABLE tableName DROP PARTITION partionName UPDATE GLOBAL INDEXES; --清数据 ALTER TABLE tabl ...