(多项式)因式分解定理(Factor theorem)与多项式剩余定理(Polynomial remainder theorem)(多项式长除法)
(多项式的)因式分解定理(factor theorem)是多项式剩余定理的特殊情况,也就是余项为 0 的情形。
0. 多项式长除法(Polynomial long division)
Polynomial long division - Wikipedia
1. 因式分解定理
该定理表达的是,多项式 f(x) 存在因子 x−k 当且仅当 f(k)=0(余数为 0,也即 k 是其根)。
对于多项式 f(x)=x3+7x2+8x+2,
- x−1 是否为其因子?f(1)≠0
- x+1 是否为其因子?f(−1)=0,故为其因子;
(多项式除法)又有 x3+7x2+8x+2x+1=x2+6x+2,因此 x+1 与 x2+6x+2 均为其因子。
2. 多项式余项定理
举例对于多项式 f(x)=x3−12x2−42,当除数为 x−3 时,商为 x2−9x−27,余项为 −123。也即,f(x)=(x−3)(x2−9x−27)−123。因此 f(3)=−123。
更为一般地,对于二次多项式 f(x)=ax2+bx+c,有如下的等式变换:
所以:
(多项式)因式分解定理(Factor theorem)与多项式剩余定理(Polynomial remainder theorem)(多项式长除法)的更多相关文章
- DHU 1788 Chinese remainder theorem again 中国剩余定理
Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 ...
- HDU 1788 Chinese remainder theorem again 中国剩余定理
题意: 给定n,AA 以下n个数m1,m2···mn 则有n条方程 res % m1 = m1-AA res % m2 = m2-AA 问res的最小值 直接上剩余定理,嘿嘿 #include< ...
- 2019牛客暑期多校训练营(第七场)D Number——实系数多项式因式分解定理
前置知识 代数基本定理 定理:每个次数 ≥ 1 复系数多项式在复数域中至少有一个跟. 由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算).(只要不断把多项式除以(x-xa),即可 ...
- hdu 1788 Chinese remainder theorem again(最小公倍数)
Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...
- Chinese remainder theorem again(中国剩余定理)
C - Chinese remainder theorem again Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:% ...
- 《孙子算经》之"物不知数"题:中国剩余定理
1.<孙子算经>之"物不知数"题 今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何? 2.中国剩余定理 定义: 设 a,b,m 都是整数. 如果 m ...
- POJ 1006 中国剩余定理
#include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(sca ...
- [TCO 2012 Round 3A Level3] CowsMooing (数论,中国剩余定理,同余方程)
题目:http://community.topcoder.com/stat?c=problem_statement&pm=12083 这道题还是挺耐想的(至少对我来说是这样).开始时我只会60 ...
- poj1006中国剩余定理
Biorhythms Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 103506 Accepted: 31995 Des ...
随机推荐
- 日常开发需要掌握的Maven知识
文章来自:https://www.jianshu.com/p/e224a6dc8f20和https://www.jianshu.com/p/20b39ab6a88c Maven出现之前 jar包默认都 ...
- spring思想分析
摘要: EveryBody in the world should learn how to program a computer...because it teaches you how to th ...
- 03Oracle Database 物理结构,逻辑结构
Oracle Database 物理结构,逻辑结构 Oracle Database 物理结构 数据文件 Oracle数据库有一个或多个物理的数据文件.数据库的数据文件包含全部数据库数据.逻辑数据物理地 ...
- jenkins自动部署测试环境
构建脚本如下: echo "当前目录":$(pwd)echo "当前时间":$(date +%Y-%m-%d_%H:%M)find ./ -type f -na ...
- 抓取猫眼电影top100的正则、bs4、pyquery、xpath实现方法
import requests import re import json import time from bs4 import BeautifulSoup from pyquery import ...
- Linux学习笔记记录(五)
- 关于app.js和route.js和service.js还有controller.js中的依赖关系
2.只要是由路由去执行的的控制器模块,必须注入到app.js里面进行依赖,在页面上就不需要ng-controller在html页面上写了: 但是如果一个控制器模块,没有经过路由管理:那么就必须要, ...
- CF899F. Letters Removing
给一个字符串支持以下操作:区间删除某个特定字符.最后输出字符串.n,m<=200000. 这题我居然不会可以回家了.. 首先,单点删除,选个平衡树比如set. 然后,他给的下标是会随删除操作变化 ...
- php获取代理服务器真实内网IP方法
功能:获取用户真实IP地址,代理服务器内网IP,防HTTP_CDN_FORWARDED_FOR注入 function getIP() { if (isset($_SERVER["HTTP_ ...
- POJ 1475 推箱
推箱 时限:n.2000MS 内存限制:n.131072K 提交材料共计: 6600 接受: 2263 特别法官 描述 想象一下你站在一个二维迷宫里,由方形细胞组成,它们可能或可能不会充满 ...