bzoj 1703 [Usaco2007 奶牛排名 传递闭包
[Usaco2007 Mar]Ranking the Cows 奶牛排名
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 504 Solved: 343
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
2 1
1 5
2 3
1 4
3 4
INPUT DETAILS:
FJ is comparing 5 cows and has already determined that cow 2 > cow
1, cow 1 > cow 5, cow 2 > cow 3, cow 1 > cow 4, and cow 3 > cow 4
(where the '>' notation means "produces milk more quickly").
Sample Output
HINT
从输入样例中可以发现,约翰已经知道的排名有奶牛2>奶牛1>奶牛5和奶牛2>奶牛3>奶牛4,奶牛2排名第一.但是他还需要知道奶牛1的名次是否高于奶牛3来确定排名第2的奶牛,假设奶牛1的名次高于奶牛3.接着,他需要知道奶牛4和奶牛5的名次,假设奶牛5的名次高于奶牛4.在此之后,他还需要知道奶牛5的名次是否高于奶牛3.所以,他至少仍需要知道3个关于奶牛的排名.
Source
题解:
这道题目是一道水题,确定排名即可,
注意题目中独一无二两个字,很关键的,
比如三个数的排名,a,b,c,就需要知道三条信息,
a和b的关系,b和c的关系,a和c的关系,
就是对于任意两个数需要知道其关系,是谁大于谁。
数组模拟即可,代码丑陋不给出了。
bzoj 1703 [Usaco2007 奶牛排名 传递闭包的更多相关文章
- Bzoj 1703: [Usaco2007 Mar]Ranking the Cows 奶牛排名 传递闭包,bitset
1703: [Usaco2007 Mar]Ranking the Cows 奶牛排名 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 323 Solved ...
- bzoj 1703: [Usaco2007 Mar]Ranking the Cows 奶牛排名【bitset+Floyd传递闭包】
把关系变成有向边,稍微想一下就是要求在有向图中不能到达的点对个数,这个可以用Floyd传递闭包来做,但是n^3的复杂度跑不了1000 考虑bitset优化! 因为传递过程只会出现0和1,用bitset ...
- bzoj:1703: [Usaco2007 Mar]Ranking the Cows 奶牛排名
Description 农夫约翰有N(1≤N≤1000)头奶牛,每一头奶牛都有一个确定的独一无二的正整数产奶率.约翰想要让这些奶牛按产奶率从高到低排序. 约翰已经比较了M(1≤M≤100 ...
- 【BZOJ】1703: [Usaco2007 Mar]Ranking the Cows 奶牛排名
[题意]给定n头牛和m对大小关系,求最坏情况下至少还需要比较几对奶牛的大小(在未确定顺序的奶牛对中随机比较) [算法]floyd求传递闭包 [题解]可达说明大小已知,则不可达点对数量就是最少比较次数. ...
- BZOJ 1641: [Usaco2007 Nov]Cow Hurdles 奶牛跨栏( floyd )
直接floyd.. ---------------------------------------------------------------------------- #include<c ...
- BZOJ 1708: [Usaco2007 Oct]Money奶牛的硬币( dp )
背包dp.. -------------------------------------------------------------------------------- #include< ...
- BZOJ 1708: [Usaco2007 Oct]Money奶牛的硬币
1708: [Usaco2007 Oct]Money奶牛的硬币 Description 在创立了她们自己的政权之后,奶牛们决定推广新的货币系统.在强烈的叛逆心理的驱使下,她们准备使用奇怪的面值.在传统 ...
- BZOJ 1706: [usaco2007 Nov]relays 奶牛接力跑
Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们的日常锻炼项目.至于进行接力跑的地点 自然是在牧场中现有的T(2 <= T < ...
- BZOJ 1641: [Usaco2007 Nov]Cow Hurdles 奶牛跨栏
Description Farmer John 想让她的奶牛准备郡级跳跃比赛,贝茜和她的伙伴们正在练习跨栏.她们很累,所以她们想消耗最少的能量来跨栏. 显然,对于一头奶牛跳过几个矮栏是很容易的,但是高 ...
随机推荐
- IIS6配置FastCGI遇到ERROR5的解决方法
FastCGI Error The FastCGI Handler was unable to process the request. ------------------------------- ...
- c#内存管理,垃圾回收和资源释放
<1>关于虚拟内存的概念 Windows使用一个虚拟寻址系统,该系统把程序可用的内存地址映射到硬件内存中的实际地址上去,这些任务完全由windows后台管理,其实际结果是32位处理机上的每 ...
- 自己动手实现Spring IoC框架
钻研Spring 源码也有一段时间了,对Spring IoC的实现原理理解算是比较透彻了,要实现一款IoC容器,简单的概括无非需要以下几个步骤: 1.定义用来描述bean的配置的Java类,例如我们有 ...
- Mac OSX简单使用中会用到的
选择操作系统(例如选择BootCamp分区的Windows):开机按住Option键直到磁盘图标出现后选择. 忘记本地账号密码:按着Command+R开机选择Recovered启动打开终端输入re ...
- android 图片叠加效果——两种方法的简介与内容 ,带解决Immutable bitmap passed to Canvas constructor错误
第一种是通过canvas画出来的效果: public void first(View v) { // 防止出现Immutable bitmap passed to Canvas constructor ...
- 7-Java-C(四平方和)
题目描述: 四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和. 如果把0包括进去,就正好可以表示为4个数的平方和. 比如: 5 = 0^2 + 0^2 + 1^2 + ...
- 部署 k8s Cluster(上)[转]
我们将部署三个节点的 Kubernetes Cluster. k8s-master 是 Master,k8s-node1 和 k8s-node2 是 Node. 所有节点的操作系统均为 Ubuntu ...
- js 将页面保存为图片
<!DOCTYPE html><html><head><title>保存为images</title><meta charset=&q ...
- Linux 之 nano 编辑器的使用
在Linux操作系统中,有很多的文本编辑器,最为重要的就是vi文本编辑器,下面来介绍一个简单的nano文本编辑器.nano的使用简单,我们可以直接加上文件名就能够打开一个旧文件或新文件,我们可以打开一 ...
- kvm的4中网络模型(qemu-kvm)
1. 隔离模式(类似vmare中仅主机模式):虚拟机之间组建网络,该模式无法与宿主机通信,无法与其他网络通信,相当于虚拟机只是连接到一台交换机上,所有的虚拟机能够相互通信. 2. 路由模式:相当于虚拟 ...