HDU 6437 最(大) 小费用最大流
Problem L.Videos
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 455 Accepted Submission(s): 222
For simplicity’s sake, they will be called as videoA and videoB.
There are some people who want to watch videos during today, and they will be happy after watching videos of C-bacteria.
There are n hours a day, m videos are going to be show, and the number of people is K.
Every video has a type(videoA or videoB), a running time, and the degree of happi- ness after someone watching whole of it.
People can watch videos continuous(If one video is running on 2pm to 3pm and another is 3pm to 5pm, people can watch both of them).
But each video only allows one person for watching.
For a single person, it’s better to watch two kinds to videos alternately, or he will lose W happiness.
For example, if the order of video is ’videoA, videoB, videoA, videoB, …’ or ’B, A, B, A, B, …’, he won’t lose happiness; But if the order of video is ’A, B, B, B, A, B, A, A’, he will lose 3W happiness.
Now you have to help people to maximization the sum of the degree of happiness.
On the first line, there is a positive integer T, which describe the number of data. Next there are T groups of data.
for each group, the first line have four positive integers n, m, K, W : n hours a day, m videos, K people, lose W happiness when watching same videos).
and then, the next m line will describe m videos, four positive integers each line S, T, w, op : video is the begin at S and end at T, the happiness that people can get is w, and op describe it’s tpye(op=0 for videoA and op=1 for videoB).
There is a blank line before each groups of data.
T<=20, n<=200, m<=200, K<=200, W<=20, 1<=S<T<=n, W<=w<=1000,
op=0 or op=1
解析 很容易看出来 这是一道费用流的题 首先数量级很小 然后很多个电影 每个电影只能看一遍 可以得到一个快乐值 (容量,费用)
关键有k个人,按照一个人一个人来贪心,策略貌似不对,所以试一下网络流。
建图
1 把每个电影拆成俩个点v,v' 有向边 v->v' 的边权为观看的该电影的快乐值的相反数 容量为1(只能观看一次)
2 然后源点s到次源点s'连一条有向边s->s' 权值为0 容量为 k
3 次源点s' 到每个电影的 v 点都连一条s'->v的有向边 权值为0 容量为1
4 每个电影的v'点到汇点 t 连一条有向边 v'-> t 权值为0 容量为1
5 电影与电影之间 根据开始 结束时间是否相交,判断是否可以跳转观看。若可以,连一条有向边 u'->v ,再判断两个电影类型是否相同,相同权值为w,不相同权值为0,容量为1
然后跑一边最小费用最大流 答案就是费用取反
AC代码
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define mp make_pair
#define X first
#define Y second
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define huan printf("\n");
#define debug(a,b) cout<<a<<" "<<b<<" ";
const int maxn=1e3+,mod=1e9+,inf=0x3f3f3f3f;
typedef long long ll;
struct MCMF {
struct Edge {
int from, to, cap, cost;
Edge(int u, int v, int w, int c): from(u), to(v), cap(w), cost(c) {}
};
int n, s, t;
vector<Edge> edges;
vector<int> G[maxn];
int inq[maxn], d[maxn], p[maxn], a[maxn]; void init(int n) {
this->n = n;
for (int i = ; i <= n; i ++) G[i].clear();
edges.clear();
}
void addedge(int from, int to, int cap, int cost) {
edges.push_back(Edge(from, to, cap, cost));
edges.push_back(Edge(to, from, , -cost));
int m = edges.size();
G[from].push_back(m - );
G[to].push_back(m - );
}
bool BellmanFord(int s, int t, int &flow, int &cost) {
for (int i = ; i <= n; i ++) d[i] = inf;
memset(inq, , sizeof(inq));
d[s] = ; inq[s] = ; p[s] = ; a[s] = inf; queue<int> Q;
Q.push(s);
while (!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = ;
for (int i = ; i < G[u].size(); i ++) {
Edge &e = edges[G[u][i]];
if (e.cap && d[e.to] > d[u] + e.cost) {
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap);
if (!inq[e.to]) {
Q.push(e.to);
inq[e.to] = ;
}
}
}
}
if (d[t] == inf) return false;
flow += a[t];
cost += d[t] * a[t];
int u = t;
while (u != s) {
edges[p[u]].cap -= a[t];
edges[p[u] ^ ].cap += a[t];
u = edges[p[u]].from;
}
return true;
}
int solve(int s, int t) {
int flow = , cost = ;
while (BellmanFord(s, t, flow, cost));
return cost;
}
}solver;
struct node
{
int l,r,w,type,id;
}a[maxn];
void build(int n,int m,int k,int w)
{
solver.init(*m+);
for(int i=;i<m;i++)
{
solver.addedge(a[i].id,a[i].id^,,-a[i].w);
solver.addedge(*m+,a[i].id,,);
solver.addedge(a[i].id^,*m+,,);
}
for(int i=;i<m;i++)
{
for(int j=i+;j<m;j++)
{
if(a[i].r<=a[j].l)
{
if(a[i].type==a[j].type)
solver.addedge(a[i].id^,a[j].id,,w);
else
solver.addedge(a[i].id^,a[j].id,,);
}
else if(a[i].l>=a[j].r)
{
if(a[i].type==a[j].type)
solver.addedge(a[j].id^,a[i].id,,w);
else
solver.addedge(a[j].id^,a[i].id,,);
}
}
}
solver.addedge(*m,*m+,k,);
}
int main()
{
int n,m,t,w,k;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d%d",&n,&m,&k,&w);
for(int i=;i<m;i++)
{
scanf("%d%d%d%d",&a[i].l,&a[i].r,&a[i].w,&a[i].type);
a[i].id=i*;
}
build(n,m,k,w);
int maxflow; // 汇点 2m+2 源点 2m 次源点2m+1
maxflow=solver.solve(*m,*m+);
printf("%d\n",-maxflow);
}
return ;
}
HDU 6437 最(大) 小费用最大流的更多相关文章
- hdu 1533 Going Home 最小费用最大流
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1533 On a grid map there are n little men and n house ...
- HDU 5988.Coding Contest 最小费用最大流
Coding Contest Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
- hdu 3667(拆边+最小费用最大流)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3667 思路:由于花费的计算方法是a*x*x,因此必须拆边,使得最小费用流模板可用,即变成a*x的形式. ...
- hdu 3488(KM算法||最小费用最大流)
Tour Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)Total Submis ...
- hdu 2686 Matrix && hdu 3367 Matrix Again (最大费用最大流)
Matrix Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
- hdu 3395(KM算法||最小费用最大流(第二种超级巧妙))
Special Fish Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- POJ-2135 Farm Tour---最小费用最大流模板题(构图)
题目链接: https://vjudge.net/problem/POJ-2135 题目大意: 主人公要从1号走到第N号点,再重N号点走回1号点,同时每条路只能走一次. 这是一个无向图.输入数据第一行 ...
- hdu 1533 Going Home 最小费用最大流 入门题
Going Home Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- HDU–5988-Coding Contest(最小费用最大流变形)
Coding Contest Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
随机推荐
- 【HEVC帧间预测论文】P1.1 基于运动特征的HEVC快速帧间预测算法
基于运动特征的 HEVC 快速帧间预测算法/Fast Inter-Frame Prediction Algorithm for HEVC Based on Motion Features <HE ...
- 在phpnow中配置phpunit
前面都好了之后,在 D:\phpnow\php-5.2.14-Win32\PEAR 之外的地方执行 phpinfo 都会出现以下错误 Warning: require_once(File/Iterat ...
- 几个有关整数的证明(from信息安全数学基础的作业)
1. 设m,n为正整数,m为奇数,求证2m-1和2n+1互素 反证法:假设d=(2m-1,2n+1)≥2,则存在x,y∈z,2m=dx+1,和2n=dy-1 则存在u,v∈z,2mn=du+1,2nm ...
- MySQL-06 数据备份和恢复
学习目标 数据备份 数据恢复 数据库迁移 导入和导出 数据备份 系统意外崩溃或者服务器硬件损坏都有可能导致数据库丢失,因此生产环境中数据备份非常重要. MySQLdump命令备份 该命令可以将数据库备 ...
- delphi 新版数组操作
https://www.cnblogs.com/xalion/p/4283491.html
- Centos7 安装 MySQL8以及远程访问的配置
Centos7 安装MySQL8 1. 添加MySQL8的本地源 执行以下命令获取安装MySQL源 [root@virde ~]# wget https://repo.mysql.com//mysql ...
- openwrt procd分析
procd源码中有很多个main入口,有点懵,不知道procd之外的其他程序是干嘛的.先找资料大概了解了一下procd是什么,然后是守护进程,再然后是openwrt启动流程等等. openwrt启动流 ...
- python 04 学生信息管理系统
今天任务不多,做了学生信息管理系统1.0,使用字典存储学生个体信息,列表存储学生字典.注意dict定义要在循环体内,若定义成全局变量或循环体外,则旧数据会被新数据覆盖.dict属于可变类型数据,内容改 ...
- 【51nod 1154】 回文串划分
有一个字符串S,求S最少可以被划分为多少个回文串. 例如:abbaabaa,有多种划分方式. a|bb|aabaa - 3 个回文串 a|bb|a|aba|a - 5 个回文串 a|b|b|a|a|b ...
- C#sql语句如何使用占位符
背景:在程序中,写sql语句时,可能要根据变量的值不同,SQL语句产生相应的变化.比如说存在变量StuName,根据变量值的不同,检索不同姓名的学生记录,这时需用到占位符的知识. 1,{0}占位符,代 ...