Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 4580  Solved: 2348

Description

在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿。在这个帮派里,有一名忍者被称之为 Master。除了 Master以外,每名忍者都有且仅有一个上级。为保密,同时增强忍者们的领导力,所有与他们工作相关的指令总是由上级发送给他的直接下属,而不允许通过其他的方式发送。现在你要招募一批忍者,并把它们派遣给顾客。你需要为每个被派遣的忍者
支付一定的薪水,同时使得支付的薪水总额不超过你的预算。另外,为了发送指令,你需要选择一名忍者作为管理者,要求这个管理者可以向所有被派遣的忍者
发送指令,在发送指令时,任何忍者(不管是否被派遣)都可以作为消息的传递 人。管理者自己可以被派遣,也可以不被派遣。当然,如果管理者没有被排遣,就不需要支付管理者的薪水。你的目标是在预算内使顾客的满意度最大。这里定义顾客的满意度为派遣的忍者总数乘以管理者的领导力水平,其中每个忍者的领导力水平也是一定的。写一个程序,给定每一个忍者 i的上级 Bi,薪水Ci,领导力L i,以及支付给忍者们的薪水总预算 M,输出在预算内满足上述要求时顾客满意度的最大值。
1  ≤N ≤ 100,000 忍者的个数;
1  ≤M ≤ 1,000,000,000 薪水总预算; 
 
0  ≤Bi < i  忍者的上级的编号;
1  ≤Ci ≤ M                     忍者的薪水;
1  ≤Li ≤ 1,000,000,000             忍者的领导力水平。
 
 

Input

从标准输入读入数据。
 
第一行包含两个整数 N M,其中 N表示忍者的个数,M表示薪水的总预算。
 
接下来 N行描述忍者们的上级、薪水以及领导力。其中的第 i 行包含三个整 Bi , C i , L i分别表示第i个忍者的上级,薪水以及领导力。Master满足B i = 0并且每一个忍者的老板的编号一定小于自己的编号 Bi < i

Output

输出一个数,表示在预算内顾客的满意度的最大值。
 
 

Sample Input

5 4
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1

Sample Output

6

HINT

如果我们选择编号为 1 的忍者作为管理者并且派遣第三个和第四个忍者,薪水总和为 4 ,没有超过总预算 4 。因为派遣了 2 个忍者并且管理者的领导力为 3 ,

用户的满意度为 2*3 ,是可以得到的用户满意度的最大值。

思路

dfs一边管理结构树,对于每个节点,考虑以它为管理者的情况,则它所能承担的派遣忍者一定是费用最小的前n个;

这样,用可并堆维护,如果某个堆超过m,每次删去费用最大的点即可;

左偏树的删除是O(logn)的,所以总时间复杂度为O(nlogn);

代码

 #include<cstdio>
#define LL long long
const int maxn=1e5+;
inline LL max_(LL x,LL y){return x>y?x:y;}
inline void swap_(int&x,int&y){x^=y,y^=x,x^=y;}
int n,m;
long long ans;
int hs,h[maxn];
int en[maxn],et[maxn];
struct tree{int b,c,l,n;LL tot;}t[maxn];
void add(int s,int t){hs++,et[hs]=t,en[hs]=h[s],h[s]=hs;}
int f[maxn];
struct teap{int s,l,r;}p[maxn];
int ff(int k){return f[k]==k?k:f[k]=ff(f[k]);}
int merger(int a,int b){
if(!a) return b;
if(!b) return a;
if(p[a].s<p[b].s) swap_(a,b);
p[a].r=merger(p[a].r,b);
swap_(p[a].l,p[a].r);
return a;
}
void dfs(int k){
for(int i=h[k];i;i=en[i]){
dfs(et[i]);
f[et[i]]=f[k]=merger(ff(et[i]),ff(k));
t[k].tot+=t[et[i]].tot;
t[k].n+=t[et[i]].n;
}
int now=ff(k);
while(t[k].tot>m){
t[k].n--;
now=ff(now);
t[k].tot-=t[now].c;
f[now]=merger(p[now].l,p[now].r);
f[f[now]]=f[now];
}
ans=max_(ans,1ll*t[k].l*t[k].n);
}
int main(){
scanf("%d%d",&n,&m);
int b,c,l;
for(int i=;i<=n;i++){
scanf("%d%d%d",&b,&c,&l);
t[i].b=b,t[i].c=c,t[i].l=l;
t[i].n=,t[i].tot=c,p[i].s=t[i].c;
add(b,i);
}
for(int i=;i<=n;i++) f[i]=i;
dfs();
printf("%lld",ans);
return ;
}

[APIO2012] 派遣 dispatching的更多相关文章

  1. APIO2012 派遣dispatching | 左偏树

    题目链接:戳我 就是尽可能地选取排名小的,加起来就可以了.然后我们考虑利用一个大根堆,一个一个合并,如果超过派遣的钱,我们就把费用最大的那个忍者丢出队列. 左偏树,作为一个十分优秀的可并堆,我们这道题 ...

  2. 数据结构,可并堆(左偏树):COGS [APIO2012] 派遣

    796. [APIO2012] 派遣 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.  在这个帮派里,有一名忍者被称之为Master.除了Master以外,每名忍者都有且 ...

  3. 洛谷1552 [APIO2012]派遣

    洛谷1552 [APIO2012]派遣 原题链接 题解 luogu上被刷到了省选/NOI- ...不至于吧 这题似乎有很多办法乱搞? 对于一个点,如果他当管理者,那选的肯定是他子树中薪水最少的k个,而 ...

  4. [APIO2012]派遣

    [APIO2012]派遣 题目大意: 给定一棵\(n(n\le10^5)\)个结点的有根树,每个点有代价\(c_i\)和权值\(l_i\),要求你选定一个结点\(k\),并在对应的子树中选取一个点集\ ...

  5. [luogu P1552] [APIO2012]派遣

    [luogu P1552] [APIO2012]派遣 题目背景 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿. 题目描述 在这个帮派里,有一名忍者被称之为Master.除 ...

  6. [APIO2012]派遣 左偏树

    P1552 [APIO2012]派遣 题面 考虑枚举每个节点作为管理者,计算所获得的满意程度以更新答案.对于每个节点的计算,贪心,维护一个大根堆,每次弹出薪水最大的人.这里注意,一旦一个人被弹出,那么 ...

  7. BZOJ2809&&LG1552 APIO2012派遣(线段树合并)

    BZOJ2809&&LG1552 APIO2012派遣(线段树合并) 题面 自己找去 HINT 简化一题面就是让你从每个点的子树中以\(<=m\)的代价选取尽可能多的点,然后乘上 ...

  8. 【APIO2012】【BZOJ2809】派遣dispatching

    2809: [Apio2012]dispatching Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1932 Solved: 967 [Submit ...

  9. 【BZOJ】【2809】【APIO2012】派遣dispatching

    贪心/可并堆 跪了……我这么弱果然还是应该回家种红薯去…… 考虑选人的时候,每个人对答案的贡献其实是一样的,都是1,那么我们就贪心地去选花钱少的就好啦~ 具体的做法:倒着枚举(因为有b[i]<i ...

随机推荐

  1. Java 设置Word页面背景色

    Word中可以针对不同文档排版设计要求来设置背景设置颜色.常见的可设置单一颜色.渐变色或加载指定图片来设置成背景.下面通过Java来设置以上3种Word页面背景色. 使用工具:Spire.Doc fo ...

  2. 02全志r58平台Android4.4.4下关闭内核中的CPU的开启关闭提示

    02全志r58平台Android4.4.4下关闭内核中的CPU的开启关闭提示 2017/8/18 13:53 版本:V1.0 开发板:SC5806(全志R58平台) SDK:android4.4.4 ...

  3. ubuntu下nginx+PHP-FPM安装配置

    安装nginx apt-get install nginx 配置nginx 位置: /etc/nginx/nginx.conf  ,其中包含了 include /etc/nginx/conf.d/*. ...

  4. mac下elasticsearch安装部署

    下载elaticsearch集成包 优势:封装了对插件的支持,且安装方式较简单 地址:https://github.com/medcl/elasticsearch-rtf 解压到指定目录后,获取该集成 ...

  5. CSData

    NSString 转换成NSData 对象 NSData* xmlData = [@"testdata" dataUsingEncoding:NSUTF8StringEncodin ...

  6. Java子类与父类方法的隐藏和覆盖

    class Base{     int x = 1;     static int y = 2;     String name(){         return "mother" ...

  7. 第17周翻译:SQL Server中的事务日志管理的阶梯:第5级:在完全恢复模式下管理日志

    来源:http://www.sqlservercentral.com/articles/Stairway+Series/73785/ 作者:Tony Davis, 2012/01/27 翻译:刘琼滨. ...

  8. android应用流量信息提取

    Linux 系统下所有的信息都是以文件的形式存在的,所以应用程序的流量信息也会被保存在操作系统的文件中.Android 2.2 版本以前的系统的流量信息都存放在 proc/net/dev(或者 pro ...

  9. 算法之A星算法(寻路)

    1.启发式搜索:启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标.这样可以省略大量无谓的搜索路径,提高了效率.在启发式搜索中,对位置的估价是十分 ...

  10. 洛谷 P2866 [USACO06NOV]糟糕的一天Bad Hair Day

    题目描述 Some of Farmer John's N cows (1 ≤ N ≤ 80,000) are having a bad hair day! Since each cow is self ...