Codeforces889C. Maximum Element
$n \leq 2000000$的排列,问有多少满足:存在个$i$,使得$p_i \neq n$,且$p_j<p_i,j \in [i+1,i+K]$,$K \leq 2000000$是给定常数。膜$1e9+7$。
排列题还是比较菜。。
这次的切入点依然是排列题的经典套路--考虑将$n$加入$n-1$的合法排列,从而建立递推关系。
先从答案要求入手,假如把$n$插进位置$i$,那么$i$之前的序列必须已经合法,否则要么接下来一个数是$n$,后面$K$个数一定$<n$,不合法,要么这序列根本就不合法,就gg。也就是说,$n$之前的数字的大小关系已经确定了。确定大小关系的情况可以开始递推:$D(i)$表示$i$在位置$i$时,剩下$i-1$个数乱排时的合法排列数——$n$(注意,这里真的是$n$)在位置$i$时,前$i-1$个数一旦确定,他们的大小关系必须如同$D(i)$的方案,然后其他的数乱排列。因此最终答案为$\sum_{i=1}^{n}D(i)\frac{(n-1)!}{(i-1)!}$。搞定。
注意这里通过大小关系把$n$变成更小的东西。
现在试着求$D(i)$。首先$i<=K$时$D(i)=0$这实际上排除了一重条件$p_i \neq n$,因为此时造成$p_j<p_i,j \in [i+1,i+K]$的只有非$n$的数。好那就来看看剩下最大的$n-1$。当$n-1$放在前$i-K-1$个位置时,它就是符合条件的$i$。当它放在$i-K$往后的位置时,又来!此时$n-1$后边是不可能有非法$i$了,但前面一定有,大小关系又是$D$!于是有$D(n)=(n-K-1)(n-2)!+\sum_{i=n-K}^{n-1}D(i)*\frac{(n-2)!}{(i-1)!}$,把$(n-2)!$提到前面,记个前缀和即可。
//#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
//#include<queue>
//#include<time.h>
//#include<complex>
#include<algorithm>
#include<stdlib.h>
using namespace std; int n,K;
#define maxn 2000011
const int mod=1e9+;
int fac[maxn],inv[maxn]; int powmod(int a,int b)
{
int ans=;
while (b)
{
if (b&) ans=1ll*a*ans%mod;
a=1ll*a*a%mod; b>>=;
}
return ans;
} int sum[maxn],f[maxn];
int main()
{
scanf("%d%d",&n,&K);
fac[]=; for (int i=;i<=n;i++) fac[i]=fac[i-]*1ll*i%mod;
inv[n]=powmod(fac[n],mod-); for (int i=n;i>=;i--) inv[i-]=1ll*inv[i]*i%mod;
for (int i=;i<=K;i++) f[i]=sum[i]=;
for (int i=K+;i<=n;i++)
{
f[i]=(1ll*(i-K-)*fac[i-]%mod+1ll*fac[i-]*(sum[i-]+mod-sum[i-K-])%mod)%mod;
sum[i]=(sum[i-]+1ll*f[i]*inv[i-])%mod;
}
int ans=;
for (int i=;i<=n;i++) ans=(ans+1ll*(sum[i]-sum[i-]+mod)*fac[n-])%mod;
printf("%d\n",ans);
return ;
}
Codeforces889C. Maximum Element的更多相关文章
- 【CF886E】Maximum Element DP
[CF886E]Maximum Element 题意:小P有一个1-n的序列,他想找到整个序列中最大值的出现位置,但是他觉得O(n)扫一遍太慢了,所以它采用了如下方法: 1.逐个遍历每个元素,如果这个 ...
- 【CodeForces】889 C. Maximum Element 排列组合+动态规划
[题目]C. Maximum Element [题意]给定n和k,定义一个排列是好的当且仅当存在一个位置i,满足对于所有的j=[1,i-1]&&[i+1,i+k]有a[i]>a[ ...
- Codeforces 889C Maximum Element(DP + 计数)
题目链接 Maximum Element 题意 现在有这一段求序列中最大值的程度片段: (假定序列是一个1-n的排列) int fast_max(int n, int a[]) { int ans ...
- Codeforces 886E Maximum Element 组合数学 + dp
我们定义dp[ i ]表示长度为 i 的序列, 最后没有一个==k的时候返回的方案数, 也就是最后强制返回 i 的方案数. 我们能得到dp方程 dp[ i ] = sum(dp[ i - j - ...
- CF886E Maximum Element
$ \color{#0066ff}{ 题目描述 }$ 从前有一个叫Petya的神仙,嫌自己的序列求max太慢了,于是将序列求max的代码改成了下面这个样子: int fast_max(int n,in ...
- Codeforces - 102222A - Maximum Element In A Stack - 模拟
https://codeforc.es/gym/102222/problem/F 注意到其实用unsigned long long不会溢出. #include<bits/stdc++.h> ...
- The 2018 ACM-ICPC Chinese Collegiate Programming Contest Maximum Element In A Stack
//利用二维数组模拟 #include <iostream> #include <cstdio> #include <cstring> #include <s ...
- Codeforces Round #445 Div. 1 C Maximum Element (dp + 组合数学)
题目链接: http://codeforces.com/contest/889/problem/C 题意: 给你 \(n\)和 \(k\). 让你找一种全排列长度为\(n\)的 \(p\),满足存在下 ...
- 【CF886E】Maximum Element
题目 考虑正难则反,答案即为\(n!-\text{返回值为n的排列数}\) 一个排列的返回值为\(n\),当且仅当在\(n\)出现之前没有一个数后面有连续\(k\)个小于它的数 设\(f_i\)表示\ ...
随机推荐
- 证明碰撞集问题(Hitting Set)是NP-complete
证明碰撞集问题(Hitting Set)是NP-complete Problem In the HITTING SET problem, we are given a family of sets { ...
- 801硬件检测工具DragonHD的使用
801硬件检测工具DragonHD的使用 2018/11/28 13:39 版本:V1.0 开发板:SC3817R 1.客户要认证器件,使用了全志官方的工具:DragonHD.exe 打开之后可以见用 ...
- layer设置弹出全屏
//弹出即全屏 var index = layer.open({ type: , content: 'http://www.layui.com', area: ['300px', '195px'], ...
- 获取页面URL两种方式
以请求http://localhost:8080/doctor/demo?code=1为例 一:用java代码获取 //获取URL中的请求参数.即?后的条件 code=1 String querySt ...
- 洛谷 P2515 [HAOI2010]软件安装
题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...
- toplink
TopLink,是位居第一的Java对象关系可持续性体系结构,原署WebGain公司的产品,后被Oracle收购,并重新包装为Oracle AS TopLink.TOPLink为在关系数据库表中存储 ...
- uva1627 Team them up!
注意这题要求互相认识不认识的人之间连一条线一个人在组1,那么不认识(互相认识)的人就在组0:同时这些人不认识的人就在组1.每个联通分量都可以独立推导,遇到矛盾则无解一个联通分量有一个核心,其他的点是分 ...
- CAD交互绘制虚线(网页版)
用户可以在CAD控件视区任意位置绘制直线. 主要用到函数说明: _DMxDrawX::DrawLine 绘制一个直线.详细说明如下: 参数 说明 DOUBLE dX1 直线的开始点x坐标 DOUBLE ...
- vgg16原始的protocol
# Enter your network definition here. # Use Shift+Enter to update the visualization.name: "VGG_ ...
- 题目:企业发放的奖金根据利润提成。 利润(I)低于或等于10万元时,奖金可提10%; 利润高于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分,可可提成7.5%; 20万到40万之间时,高于20万元的部分,可提成5%; 40万到60万之间时高于40万元的部分,可提成 3%; 60万到100万之间时,高于60万元的部分,可提成1.5%; 高于100万元时,超过
题目:企业发放的奖金根据利润提成. 利润(I)低于或等于10万元时,奖金可提10%: 利润高于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分,可可提成7.5%: 20万到 ...