描述

N!阶乘是一个非常大的数,大家都知道计算公式是N!=N*(N-1)······*2*1.现在你的任务是计算出N!的位数有多少(十进制)?

 
输入
首行输入n,表示有多少组测试数据(n<10)
随后n行每行输入一组测试数据 N( 0 < N < 1000000 )
输出
对于每个数N,输出N!的(十进制)位数。
样例输入
3
1
3
32000
样例输出
1
1
130271

/*    NYOJ69 阶乘数位长度
* 方法一:
* 可设想n!的结果是不大于10的M次幂的数,即n!<=10^M(10的M次方),则不小于M的最小整数就是 n!的位数,对
* 该式两边取对数,有 M =log10^n! 即:M = log10^1+log10^2+log10^3...+log10^n 循环求和,就能算得M值,
* 该M是n!的精确位数。当n比较大的时候,这种方法方法需要花费很多的时间。
*
* 方法二:
* 利用斯特林(Stirling)公式的进行求解。下面是推导得到的公式:
* res=(long)( (log10(sqrt(4.0*acos(0.0)*n)) + n*(log10(n)-log10(exp(1.0)))) + 1 );
* 当n=1的时候,上面的公式不适用,所以要单独处理n=1的情况!
* 有关斯特林(Stirling)公式及其相关推导,这里就不进行详细描述,有兴趣的话可看这里。
* 这种方法速度很快就可以得到结果。详细证明如下:
* http://episte.math.ntu.edu.tw/articles/mm/mm_17_2_05/index.html
*/
#include<iostream>
#include <cmath>
using namespace std;
int normal(double n)
{
double x=;
while(n)
{
x +=log10(n);
n--;
}
return (int)x+;
}
long stirling(double n)
{
long x=;
if( n == )
x = ;
else
{
x = (long)( (log10(sqrt(4.0*acos(0.0)*n)) + n*(log10(n)-log10(exp(1.0)))) + );
}
return x;
}
int main()
{
int n;
cin>>n;
while(n--)
{
int x;
cin>>x;
cout<<stirling(x)<<endl;
}
return ;
}

ACM 阶乘数位数的更多相关文章

  1. n阶乘,位数,log函数,斯特林公式

    一.log函数 头文件: #include <math.h> 使用: 引入#include<cmath> 以e为底:log(exp(n)) 以10为底:log10(n) 以m为 ...

  2. N的阶乘的长度 V2(斯特林近似) 求 某个大数的阶乘的位数 .

    求某个大数的阶乘的位数 . 得到的值  需要 +1 得到真正的位数 斯特林公式在理论和应用上都具有重要的价值,对于概率论的发展也有着重大的意义.在数学分析中,大多都是利用Г函数.级数和含参变量的积分等 ...

  3. Java之阶乘数的计算

    说起“阶乘数”,我们应该都不会感到陌生.当老师布置了这样的作业,我们大多数人是一贯用笔算,还有的同学会用计算机去计算.数学是讲究原理和方法的,我们知其然,也要知其所以然.下面我们就用编程来计算阶乘数. ...

  4. HDU 1018 阶乘数的位数

    题目大意: 将一个数开阶乘后得到的值,来求这个值的位数 n! = 1*2*3*4...*n 对于求一个数的位数的方法为ans = lg(n!) + 1 那么就可以看作 ans = lg(1) + lg ...

  5. 斯特林(Stirling)公式 求大数阶乘的位数

    我们知道整数n的位数的计算方法为:log10(n)+1n!=10^m故n!的位数为 m = log10(n!)+1 lgN!=lg1+lg2+lg3+lg4+lg5+................. ...

  6. HDU 1018Big Number(大数的阶乘的位数,利用公式)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1018 Big Number Time Limit: 2000/1000 MS (Java/Others) ...

  7. 计算一个大数n的阶乘的位数宽度(十进制)(log i累加法 )

    输入: 每行输入1个正整数n, (0<n<1000 000) 输出: 对于每个n,输出n!的(十进制)位数. 分析: 这道题采用蛮力法.根据定义,直接求解! 所谓n!的十进制位数,就是 l ...

  8. ACM 阶乘之和

    阶乘之和 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 给你一个非负数整数n,判断n是不是一些数(这些数不允许重复使用,且为正数)的阶乘之和,如9=1!+2!+3! ...

  9. ACM 阶乘的0

    阶乘的0 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 计算n!的十进制表示最后有多少个0   输入 第一行输入一个整数N表示测试数据的组数(1<=N< ...

随机推荐

  1. Android事件处理概述

    不管是桌面应用还是手机应用程序,面对最多的就是用户,经常需要处理的就是用户的动作——也就是需要为用户动作提供响应,这种为用户动作提供响应的机制就是事件处理. Android提供了强大的事件处理机制,包 ...

  2. multipathd dead but pid file exists

    构建RAC环境时出现的错误 百度半天未找到解决方案,Google了一下,终于找到可行方案 Solution:- yum update device-mapper glibc -y [root@HE2 ...

  3. bat-bat-bat (重要的事情说三遍)

    去年noip前prey亲授,当时就觉得这是个好东西!非常好!然后我就没学会.接着最近被安利小红的bat!!! 小红bat!!! get!!!谢小红!!! -----> http://www.cn ...

  4. spring mvc 参数传递的三种方式

    springmvc.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=" ...

  5. Select与Epoll比较

    一.问题引出 联系区别 问题的引出,当需要读两个以上的I/O的时候,如果使用阻塞式的I/O,那么可能长时间的阻塞在一个描述符上面,另外的描述符虽然有数据但是不能读出来,这样实时性不能满足要求,大概的解 ...

  6. MVC + AngularJS 初体验(实现表单操作)

    AngularJS AngularJS 通过新的属性和表达式扩展了 HTML. AngularJS 可以构建一个单一页面应用程序(SPAs:Single Page Applications). Ang ...

  7. 对于python的__name__="__main__"的含义的理解

    学习python的时候经常会看到python 中__name__ = \'__main__\' 这样的代码,可能很多新手一开始学习的时候都比较疑惑,python 中__name__ = '__main ...

  8. JS与浏览器的几个兼容性问题

    第一个:有的浏览器不支持getElementsByClassName(),所以需要写一个function()来得到需要标签的class,然后进行class的增加.删除等操作. 第二个:在需要得到特定标 ...

  9. IE6支持透明PNG图片解决方案:DD_belatedPNG.js

    DD_belatedPNG.js 是一个能是IE6支持p显示ng透明图片,而且还支持背景循环(background-repeat)和定位(backgrond-position) ,支持focus,Ho ...

  10. 算法笔记_017:递归执行顺序的探讨(Java)

    目录 1 问题描述 2 解决方案 2.1 问题化简 2.2 定位输出测试 2.3 回顾总结 1 问题描述 最近两天在思考如何使用蛮力法解决旅行商问题(此问题,说白了就是如何求解n个不同字母的所有不同排 ...