POJ 1845 Sumdiv (整数拆分+等比快速求和)
当我们拆分完数据以后,
A^B的所有约数之和为:
sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2+...+pn^(an*B)].
当时面对等比数列的时候,想到了求和公式,因为直接算超时了,但是带膜除法不能直接除,所以又想到了乘法逆元,但是逆元的使用条件是除数和mod互质的时候,题目给我们的膜不够大,然后我就方了,不知道该怎么去处理了,后来看到网上,才学会了等比快速求和的方法。
它的思想是二分法+递归,规律如下:
(1)若n为奇数,一共有偶数项,则:
1 + p + p^2 + p^3 +...+ p^n
= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
= (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))
(2)若n为偶数,一共有奇数项,则:
1 + p + p^2 + p^3 +...+ p^n
= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
= (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);
至于幂的求法,可以用快速幂去求。代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
///sqrt(50000000) = 7071.07;///数据足够
/// num = a1(q^n - 1)/ (q-1);///方法难以使用
const long long Mod = ;
#define maxn 8000
#define LL long long
LL a,b,p[maxn],e[maxn],tot;
void split()
{
int d = sqrt(a*1.0);///素数因子在它的根号之下
tot = ;
memset(e,,sizeof(e));
for(int i = ; i <= d; i+=)
{
if(a == ) break;
if(a%i == )
{
p[tot] = i;
while(a % i == )
{
a /= i;
e[tot]++;
}
tot++;
}
if(i == ) i--;///这种方法求素数很高效
}
if(a != )
{
p[tot] = a;
e[tot]++;
tot++;
}
for(int i = ; i < tot; i++)
e[i] *= b;
/*for(int i = 0;i < tot;i++){
printf("p[%d] = %lld e[%d] = %lld\n",i,p[i],i,e[i]);
}*/
}
LL mypow(LL a,LL b)
{
if(b == ) return ;
if(b == ) return a % Mod;
if(b % == ) return mypow(((a%Mod)*(a%Mod))%Mod,b/)%Mod;
else return ((a%Mod) * mypow(a%Mod,b-)) % Mod;
}
LL get_sum(LL a,LL b)
{
if(b==) return ;
if(b % ) return ((get_sum(a,b/)%Mod)*(+mypow(a,b/+))%Mod) % Mod;
else return ((get_sum(a,b/-)%Mod * (+mypow(a,b/+)%Mod))%Mod + mypow(a,b/)%Mod) % Mod; }
int main()
{
while(~scanf("%I64d %I64d",&a,&b))
{
split();
LL ans = ;
for(int i = ;i < tot;i++)
{
ans = ans * get_sum(p[i],e[i])%Mod;///这里不可以省略
}
printf("%I64d\n",ans);
}
return ;
}
注意:这里有一个很难发现的错误,在取膜的时候不可以使用 ans ×= 的形式,优先级的不同会让他溢出。
POJ 1845 Sumdiv (整数拆分+等比快速求和)的更多相关文章
- poj 1845 POJ 1845 Sumdiv 数学模板
筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...
- POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]
传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...
- POJ 1845 Sumdiv (整数唯一分解定理)
题目链接 Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 25841 Accepted: 6382 Desc ...
- POJ 1845 Sumdiv(因子分解+快速幂+二分求和)
题意:给你A,B,让求A^B所有的因子和模上9901 思路:A可以拆成素因子的乘积: A = p1^x1 * p2^x2 *...* pn^xn 那么A^B = p1^(B*x1) * p2^(B*x ...
- poj 1845 Sumdiv 约数和定理
Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...
- POJ 1845 Sumdiv(逆元)
题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点 1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...
- POJ 1845 Sumdiv 【二分 || 逆元】
任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...
- POJ 1845 Sumdiv
快速幂+等比数列求和.... Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 12599 Accepted: 305 ...
- POJ 1845 Sumdiv#质因数分解+二分
题目链接:http://poj.org/problem?id=1845 关于质因数分解,模板见:http://www.cnblogs.com/atmacmer/p/5285810.html 二分法思想 ...
随机推荐
- Visual Studio 2010/2013 UTF8编码调试时显示中文
VisualStudio 2010 SP1环境 1.设置string默认编码为utf8,只需要在文件头部加入以下代码 #pragma execution_character_set("utf ...
- OAuth流程
简介 OAuth是一种协议,OAuth协议为用户资源的授权提供了一个安全的.开放而又简易的标准 第三方若想访问用户资源,就必须遵守服务提供商实现的OAuth协议 OAuth授权的步骤(新浪微博为例) ...
- 1.(1)编写一个接口ShapePara,要求: 接口中的方法: int getArea():获得图形的面积。int getCircumference():获得图形的周长 (2)编写一个圆类Circle,要求:圆类Circle实现接口ShapePara。 该类包含有成员变量: radius:public 修饰的double类型radius,表示圆的半径。 x:private修饰的double型变量
//接口 ShapePara package d922B; public interface ShapePara { int getArea(); int getCircumference(); } ...
- javaScript中的一些知识
利用js动态生成table <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http ...
- 关于Linode、Digitalocean、Vultr三款美国VPS服务商的用户体验
曾几何时,虽然我们在海外VPS服务商中也可以看到各种大大小小的商家,但是真正能让Linode这样高富帅有竞争力的还真不多,这不当初在Linode商家512MB内存方案卖20美元一个月的时候,还是有很多 ...
- 在线GET/POST API接口请求模拟测试工具
在前后端开发过程中经常需要对HTTP接口进行测试,推荐几款比较好用的测试工具 Postman https://www.getpostman.com/ 强大的HTTP请求测试工具 支持多平台 Advan ...
- Windows线程同步(下)
线程同步三:事件 CreateEvent:Creates or opens a named or unnamed event object. HANDLE WINAPI CreateEvent( _I ...
- loadunner使用socket协议来实现多客户端连接同一服务器脚本(使用到IP欺骗技术)
第一部分: #include "lrs.h" vuser_init(){ lrs_startup(257); return 0;} 第二部分: Action(){ char *Re ...
- TCP/IP体系结构-测试人员必须理解的
如果还想在测试这条路上继续走下去的话,那么下面这些东西就是我们必须去掌握的,至少你还不想止步于简单的黑盒测试--其实,一直想去接触Linux下的应用测试,这样能学到东西会很多,而且会非常的受用.之前听 ...
- mysql 数据表
CREATE DATABASE IF NOT EXISTS `shop`;USE `shop`; drop table if exists lidepeng; create table lidepe ...