Codeforces Round #FF 446A DZY Loves Sequences
预处理出每一个数字能够向后延伸多少,然后尝试将两段拼起来。
1 second
256 megabytes
standard input
standard output
DZY has a sequence a, consisting of n integers.
We'll call a sequence ai, ai + 1, ..., aj (1 ≤ i ≤ j ≤ n) a
subsegment of the sequence a. The value (j - i + 1) denotes
the length of the subsegment.
Your task is to find the longest subsegment of a, such that it is possible to change at most one number (change one number to any integer you want) from
the subsegment to make the subsegment strictly increasing.
You only need to output the length of the subsegment you find.
The first line contains integer n (1 ≤ n ≤ 105).
The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).
In a single line print the answer to the problem — the maximum length of the required subsegment.
6
7 2 3 1 5 6
5
You can choose subsegment a2, a3, a4, a5, a6 and
change its 3rd element (that is a4)
to 4.
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; int n,a[110000],dp[110000]; int main()
{
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",a+i);
int nx=-1;
for(int i=0;i<n;i++)
{
if(nx>i)
{
dp[i]=nx-i;
continue;
}
int j=i;
while(j+1<n&&a[j]<a[j+1]) j++;
dp[i]=j-i+1;
nx=max(nx,j+1);
}
int ans=dp[0];
for(int i=0;i<n;i++)
{
int p=dp[i]+i-1;
if(p-1>=0&&p+1<n&&a[p+1]>a[p-1]+1)
{
ans=max(ans,dp[i]-1+dp[p+1]+1);
}
if(p+2<n&&a[p+2]>a[p]+1)
{
ans=max(ans,dp[i]+dp[p+2]+1);
}
if(p+1<n||i-1>=0) ans=max(ans,dp[i]+1);
i=p;
}
printf("%d\n",ans);
return 0;
}
Codeforces Round #FF 446A DZY Loves Sequences的更多相关文章
- codeforces 446A DZY Loves Sequences
vjudge 上题目链接:codeforces 446A 大意是说最多可以修改数列中的一个数,求最长严格递增的连续子序列长度. 其实就是个 dp 的思想,想好思路后交上去没想到一直 wa 在第二个测试 ...
- Codeforces 446A. DZY Loves Sequences (线性DP)
<题目链接> 题目大意: 给定一个长度为$n$的序列,现在最多能够改变其中的一个数字,使其变成任意值.问你这个序列的最长严格上升子段的长度是多少. #include <bits/st ...
- CodeForces 446A DZY Loves Sequences (DP+暴力)
题意:给定一个序列,让你找出一个最长的序列,使得最多改其中的一个数,使其变成严格上升序列. 析:f[i] 表示以 i 结尾的最长上升长度,g[i] 表示以 i 为开始的最长上升长度,这两个很容易就求得 ...
- CodeForces - 446A DZY Loves Sequences(dp)
题意:给定一个序列a,求最长的连续子序列b的长度,在至多修改b内一个数字(可修改为任何数字)的条件下,使得b严格递增. 分析: 1.因为至多修改一个数字,假设修改a[i], 2.若能使a[i] < ...
- DP Codeforces Round #FF (Div. 1) A. DZY Loves Sequences
题目传送门 /* DP:先用l,r数组记录前缀后缀上升长度,最大值会在三种情况中产生: 1. a[i-1] + 1 < a[i+1],可以改a[i],那么值为l[i-1] + r[i+1] + ...
- Codeforces Round #FF (Div. 1) A. DZY Loves Sequences 动态规划
A. DZY Loves Sequences 题目连接: http://www.codeforces.com/contest/446/problem/A Description DZY has a s ...
- Codeforces Round #FF (Div. 2):C. DZY Loves Sequences
C. DZY Loves Sequences time limit per test 1 second memory limit per test 256 megabytes input standa ...
- codeforces#FF DIV2C题DZY Loves Sequences(DP)
题目地址:http://codeforces.com/contest/447/problem/C C. DZY Loves Sequences time limit per test 1 second ...
- [CodeForces - 447C] C - DZY Loves Sequences
C - DZY Loves Sequences DZY has a sequence a, consisting of n integers. We'll call a sequence ai, ai ...
随机推荐
- MEF初体验之九:部件生命周期
理解MEF容器中部件的生命周期及其含义是非常重要的.鉴于MEF重点在开放端应用程序,这将变得尤其重要的,一旦app ships和第三方扩展开始运行,作为应用程序的开发者将很好地控制这一系列的部件.生命 ...
- dapper+linq+json+ztree构建树
dapper获取实体的集合 /// <summary> /// 获取表tb_sys_zhuowei所有数据 /// </summary> public IEnumerable& ...
- NSIS 自定义页面制作关闭功能
因工作需要要自定义NSIS的安装页面,其中用到一个功能. 修改的是这个项目:https://github.com/nicecai/nsissource http://hamletsoft.com/ 在 ...
- Android使用代码消除App数据并重新启动设备
/** * 使用代码消除App数据 * 我们不寻常的清除App数据,中找到相应的App * 然后选择其清除数据.以下给出代码实现. * * 注意事项: * 1 设备须要root * 2 该演示样例中删 ...
- HDOJ 1753 明朝A+B
http://acm.hdu.edu.cn/showproblem.php? pid=1753 大明A+B Time Limit: 3000/1000 MS (Java/Others) M ...
- Codeforces Round #254 (Div. 2):A. DZY Loves Chessboard
A. DZY Loves Chessboard time limit per test 1 second memory limit per test 256 megabytes input stand ...
- java RC4加密和解码
package com.*; public class RC4 { public static String decry_RC4(byte[] data, String key) { if (data ...
- Power Strings (poj 2406 KMP)
Language: Default Power Strings Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 33205 ...
- android 拍照注意问题
Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE); startActivityForResult(intent, reqCode) ...
- linux tar.gz zip 减压 压缩命令
http://apps.hi.baidu.com/share/detail/37384818 download ADT link http://dl.google.com/android/ADT-0. ...