python爬虫--数据解析
数据解析
什么是数据解析及作用
概念:就是将一组数据中的局部数据进行提取
作用:来实现聚焦爬虫
数据解析的通用原理
标签定位
取文本或者属性
正则解析
正则回顾
单字符:
. : 除换行以外所有字符
[] :[aoe] [a-w] 匹配集合中任意一个字符
\d :数字 [0-9]
\D : 非数字
\w :数字、字母、下划线、中文
\W : 非\w
\s :所有的空白字符包,括空格、制表符、换页符等等。等价于 [ \f\n\r\t\v]。
\S : 非空白
数量修饰:
* : 任意多次 >=0
+ : 至少1次 >=1
? : 可有可无 0次或者1次
{m} :固定m次 hello{3,}
{m,} :至少m次
{m,n} :m-n次
边界:
$ : 以某某结尾
^ : 以某某开头
分组:
(ab)
贪婪模式: .*
非贪婪(惰性)模式: .*?
re.I : 忽略大小写
re.M :多行匹配
re.S :单行匹配
re.sub(正则表达式, 替换内容, 字符串)
正则练习
import re
#提取出python
key="javapythonc++php"
res = re.findall('python',key)[0] #re.findall('python',key)返回的结果是列表类型的数据
print(res)
#提取出hello world
key="<html><h1>hello world<h1></html>"
re.findall('<h1>(.*)<h1>',key)[0]
#提取170
string = '我喜欢身高为170的女孩'
re.findall('\d+',string)
#提取出http://和https://
key='http://www.baidu.com and https://boob.com'
re.findall('https?://',key)
#提取出hello
key='lalala<hTml>hello</HtMl>hahah' #输出<hTml>hello</HtMl>
re.findall('<[Hh][Tt][mM][lL]>(.*)</[Hh][Tt][mM][lL]>',key)
#提取出hit.
key='bobo@hit.edu.com'#想要匹配到hit.
re.findall('h.*?\.',key)
#匹配sas和saas
key='saas and sas and saaas'
re.findall('sa{1,2}s',key)
正则爬取
#进行全站数据的爬取:爬取所有页码的图片数据
#需求的实现
#制定一个通用的url模板,不可以被改变
url = 'http://duanziwang.com/category/搞笑图/%d/'
for page in range(1,4):
new_url = format(url%page)
page_text = requests.get(new_url,headers=headers).text #页面源码数据
#新建一个文件夹
dirName = 'imgLibs'
if not os.path.exists(dirName):
os.mkdir(dirName)
#数据解析:每一张图片的地址
ex = '<article.*?<img src="(.*?)" alt=.*?</article>'
img_src_list = re.findall(ex,page_text,re.S) #爬虫中使用findall函数必须要使用re.S
for src in img_src_list:
imgName = src.split('/')[-1]
imgPath = dirName+'/'+imgName
urllib.request.urlretrieve(url=src,filename=imgPath)
print(imgName,'下载成功!!!')
bs4
环境的安装:
pip install bs4
pip install lxml
bs4的解析原理
实例化一个BeautifulSoup的对象,并且将即将被解析的页面源码数据加载到该对象中
调用BeautifulSoup对象中的相关属性和方法进行标签定位和数据提取
如何实例化BeautifulSoup对象呢?
BeautifulSoup(fp,'lxml'):专门用作于解析本地存储的html文档中的数据
BeautifulSoup(page_text,'lxml'):专门用作于将互联网上请求到的页面源码数据进行解析
bs4的基本语法
基础语法:
soup = BeautifulSoup(page_text,'lxml')
(1)根据标签名查找
- soup.a 只能找到第一个符合要求的标签
(2)获取属性
- soup.a.attrs 获取a所有的属性和属性值,返回一个字典
- soup.a.attrs['href'] 获取href属性
- soup.a['href'] 也可简写为这种形式
(3)获取内容
- soup.a.string 获取a标签的直系文本
- soup.a.text 这是属性,获取a子类的所有文本
- soup.a.get_text() 这是方法,获取a标签子类的所有文本
【注意】如果标签还有标签,那么string获取到的结果为None,而其它两个,可以获取文本内容
(4)find:找到第一个符合要求的标签
- soup.find('a') 找到第一个符合要求的
- soup.find('a', title="xxx") 具有title=a属性的
- soup.find('a', alt="xxx")
- soup.find('a', class_="xxx")
- soup.find('a', id="xxx")
(5)find_all:找到所有符合要求的标签
- soup.find_all('a')
- soup.find_all(['a','b']) 找到所有的a和b标签
- soup.find_all('a', limit=2) 限制前两个
(6)根据选择器选择指定的内容
select:soup.select('#feng')
- 常见的选择器:标签选择器(a)、类选择器(.)、id选择器(#)、层级选择器
- 层级选择器:
div .dudu #lala .meme .xixi 下面好多级
div > p > a > .lala 只能是下面一级
select就是css选择器
【注意】select选择器返回永远是列表,需要通过索引提取指定的对象
select 和 find 和findall
soup = BeautifulSoup(html, ‘lxml‘)
s = soup.select(‘div .lily‘)#select的写法和find有区别,select是标签和class都在一个字符串里,find是两个字符串,用逗号隔开
f = soup.find(‘div‘,class_ = ‘lily‘) #find只取第一个值,返回的是字符串
fa = soup.find_all(‘div‘,class_ = ‘lily‘)#find——all是全部的值和select一样,是一个列表
fal = soup.find_all(‘div‘,class_ = ‘lily‘,limit=1)#find——all是全部的值和select一样,是一个列表,加limit属性后只返回第一个
print(s)
print(f)
print(fa)
print(fal)
>>>
[<div class="lily" id="ben">大笨蛋</div>, <div class="lily" id="ben">是个大笨蛋吗?</div>]
<div class="lily" id="ben">大笨蛋</div>
[<div class="lily" id="ben">大笨蛋</div>, <div class="lily" id="ben">个大笨蛋吗?</div>]
[<div class="lily" id="ben">大笨蛋</div>]
属性定位:soup.find('tagName',attrName='value'),返回也是单数
find_all:和find用法一致,但是返回值是列表
1. name参数的四种过滤器
soup=Beautifulsoup('page','lxml')
不带过滤器: print(soup.find_all()) #没有过滤,查找所有标签
字符串过滤器: print (soup.find_all()) #字符串过滤器,即标签名
列表: print(soup.find_(['a','b'])) #找到所有的a标签和b标签,任一即可
正则: print(soup.find_all(re.complie('^b'))) #找到所有b开头的标签
方法: def has_class_but_no_id(tag):
return tag.has_attr('class') and not tag.has_attr('id')
print(soup.find_all(has_class_but_no_id))
2、按照类名查找,注意关键字是class_,class_=value,value可以是五种选择器之一
print(soup.find_all('a',class_='sister')) #查找类为sister的a标签
print(soup.find_all('a',class_='sister ssss')) #查找类为sister和sss的a标签,顺序错误也匹配不成功
print(soup.find_all(class_=re.compile('^sis'))) #查找类为sister的所有标签
3、attrs
print(soup.find_all('p',attrs={'class':'story'}))
4、text: 值可以是:字符,列表,True,正则
print(soup.find_all(text='Elsie'))
print(soup.find_all('a',text='Elsie'))
5、limit参数:如果文档树很大那么搜索会很慢.如果我们不需要全部结果,可以使用 limit 参数限制返回结果的数量.效果与SQL中的limit关键字类似,
当搜索到的结果数量达到 limit 的限制时,就停止搜索返回结果
print(soup.find_all('a',limit=2))
6、recursive:调用tag的 find_all() 方法时,Beautiful Soup会检索当前tag的所有子孙节点,如果只想搜索tag的直接子节点,可以使用参数 recursive=False .
print(soup.html.find_all('a'))
print(soup.html.find_all('a',recursive=False))
7. find和find_all一样
爬取三国演义的章节信息和文章内容
分析:
1.先获取三国演义的主页面,里面包含了三国演义的文章章节标题,每个文章的章节都是一个a标签,访问这个a标签,就能查看文章的内容
2.发送请求,请求三国演义的主界面
3.在三国演义的主页面的html源码中找到章节的标签位置,定位标签位置
4.拿到列表数据,循环列表,循环发送章节的内容的请求
import requests
from bs4 import BeautifulSoup # 导入BeautifulSoup
url = 'http://www.shicimingju.com/book/sanguoyanyi.html' #
headers={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36'
}
sg_list = requests.get(url=url,headers=headers).text
soup = BeautifulSoup(sg_list,'lxml')
content = soup.select('.book-mulu > ul > li > a') #章节的标签
f = open('sanguo.txt','w',encoding='utf-8')
for i in content:
new_url = 'http://www.shicimingju.com'+i['href'] #拼接标签的访问路径
title = i.string
detail = requests.get(url=new_url,headers=headers).text #循环发送对文章内容的请求
soup = BeautifulSoup(detail,'lxml')
new_detail = soup.find('div',class_="chapter_content").text
f.write(new_detail)
print(title+'爬取成功')
f.close()
xpath
xpath安装及基本语法
环境的安装:pip install lxml
xpath的解析原理
实例化一个etree类型的对象,且将页面源码数据加载到该对象中
需要调用该对象的xpath方法结合着不同形式的xpath表达式进行标签定位和数据提取
etree对象的实例化
etree.parse(fileNane) #本地的html文件
etree.HTML(page_text) #声明了一段HTML文本,调用HTML类进行初始化,构造了一个XPath解析对象
xpath方法返回的永远是一个列表
标签定位
xpath表达式中最最侧的/表示的含义是说,当前定位的标签必须从根节点开始进行定位
xpath表达式中最左侧的//表示可以从任意位置进行标签定位
xpath表达式中非最左侧的//表示的是多个层级的意思
xpath表达式中非最左侧的/表示的是一个层级的意思
属性定位
//标签名[@arrtName='value']
循环中标签定位: ./表示当前标签
索引定位://标签名/li[3] #第三个li标签
提取数据
取文本:
/text():取直系的文本内容
//text():取所有的文本内容,循环中不能再用索引,例如文本中有br标签分割
取属性:
tag/@attrName
举例:
from lxml import etree
tree = etree.parse('./test.html')
tree.xpath('/html/head/meta')[0] #绝对路径
tree.xpath('//meta')[0] #相对路径,将整个页面源码中所有的meta进行定位
tree.xpath('/html//meta')[0]
#属性定位
tree.xpath('//div[@class="song"]')
#索引定位
tree.xpath('//div[@class="tang"]/ul/li[3]') #该索引是从1开始
tree.xpath('//div[@class="tang"]//li[3]') #该索引是从1开始
#取文本
tree.xpath('//p[1]/text()')
tree.xpath('//div[@class="song"]//text()')
#取属性
tree.xpath('//a[@id="feng"]/@href')
爬取boss的招聘信息
爬取的内容:岗位名称,公司名称,薪资,岗位描述
url = 'https://www.zhipin.com/job_detail/? query=python%E7%88%AC%E8%99%AB&city=101010100&industry=&position=' # python爬虫岗位的url
headers={
'cookie': '_uab_collina=157338945037017905889165; __c=1573389450; __g=-; __l=l=%2Fwww.zhipin.com%2Fweb%2Fcommon%2Fsecurity-check.html%3Fseed%3Dl%252FiZaxWImFKXsBkSlPZFk9r1hTxzYO%252BbuuzP3sRZC3A%253D%26name%3Dcb43d3e3%26ts%3D1573389319454%26callbackUrl%3D%252Fjob_detail%252F%253Fquery%253Dpython%2525E7%252588%2525AC%2525E8%252599%2525AB%2526city%253D101010100%2526industry%253D%2526position%253D%26srcReferer%3D&r=&friend_source=0&friend_source=0; Hm_lvt_194df3105ad7148dcf2b98a91b5e727a=1573389451,1573390721; Hm_lpvt_194df3105ad7148dcf2b98a91b5e727a=1573392780; __zp_stoken__=48121bb20qltoY5SdLcZPo5yn7gLjgHQMQN16Gyq4%2B26dpVXYTOQYI8oCaMpwStY3B5JC%2Fg5rjYSnOw4oEuk5fSh4A%3D%3D; __a=96130844.1573389450..1573389450.7.1.7.7',
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36'
}
#cookies反爬机制,cookies有可能随时变化
page_text = requests.get(url,headers=headers).text
#数据解析
tree = etree.HTML(page_text)
li_list = tree.xpath('//div[@class="job-list"]/ul/li')
for li in li_list:
# 需要将li表示的局部页面源码数据中的相关数据进行提取
# 如果xpath表达式被作用在了循环中,表达式要以./或者.//开头
detail_url = 'https://www.zhipin.com'+li.xpath('.//div[@class="info-primary"]/h3/a/@href')[0]
job_title = li.xpath('.//div[@class="info-primary"]/h3/a/div/text()')[0]
salary = li.xpath('.//div[@class="info-primary"]/h3/a/span/text()')[0]
company = li.xpath('.//div[@class="info-company"]/div/h3/a/text()')[0]
#对详情页的url发请求解析出岗位职责
detail_page_text = requests.get(detail_url,headers=headers).text
tree = etree.HTML(detail_page_text)
job_desc = tree.xpath('//div[@class="text"]//text()')
job_desc = ''.join(job_desc)#job_desc获取列表数据,通过join变成字符串形式的数据
print(job_title,salary,company,job_desc)
爬取糗事百科的段子内容和作者名称
headers = {
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.100 Safari/537.36',
}
url = 'https://www.qiushibaike.com/text/page/4/'
page_text = requests.get(url,headers=headers).text
tree = etree.HTML(page_text)
div_list = tree.xpath('//div[@id="content-left"]/div')
for div in div_list:
author = div.xpath('./div[1]/a[2]/h2/text() | ./div[1]/span[2]/h2/text()')[0]
# 糗事百科中有作者和段子内容,作者分为实名用户和匿名用户,但通过对糗事百科的源码,当是匿名用户的时候,文本内容就取不到,所以返回None,但是爬取到的内容也就是None,不是想要的结果,解决: ./div[1]/a[2]/h2/text()取实名用户,./div[1]/span[2]/h2/text()取匿名用户
content = div.xpath('.//div[@class="content"]/span//text()')
content = ''.join(content)
print(author,content)
爬取糗事百科笑话的标题和内容
http://www.lovehhy.net/Joke/Detail
from lxml import etree
import requests
url = 'http://www.lovehhy.net/Joke/Detail/QSBK/'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.100 Safari/537.36',
'Cookie':'bdshare_firstime=1573442373487; ASP.NET_SessionId=0yoewt3nnhet3apass0u4hj5; ASPSESSIONIDQADBDDCA=AAKLABFACJHJNHHCMCKEJGJB; __51cke__=; Hm_lvt_03da7ad267ef3d61ce133d6c12f67140=1573442375,1573478536; ASPSESSIONIDSACCBCCA=BCOLDPEALOKMHFJJMHODNHGB; Hm_lpvt_lovehhy=1573479577; Hm_lvt_lovehhy=1573479577; Hm_lpvt_03da7ad267ef3d61ce133d6c12f67140=1573479707; __tins__2343955=%7B%22sid%22%3A%201573478536404%2C%20%22vd%22%3A%2011%2C%20%22expires%22%3A%201573481507039%7D; __51laig__=11'
}
joke_text = requests.get(url=url,headers=headers).text
tree = etree.HTML(joke_text)
url_text = tree.xpath('//*[@id="footzoon"]/h3/a/@href')
url_text
for i in url_text:
qiu_url = 'http://www.lovehhy.net' + i
content_text = requests.get(url=qiu_url,headers=headers).text
tree = etree.HTML(content_text)
title = tree.xpath('//*[@id="read"]/h1/text()')[0]
content = tree.xpath('//*[@id="fontzoom"]/text()')[0]
print(title,content)
python爬虫--数据解析的更多相关文章
- python爬虫数据解析之BeautifulSoup
BeautifulSoup是一个可以从HTML或者XML文件中提取数据的python库.它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式. BeautfulSoup是python爬虫三 ...
- python爬虫数据解析之正则表达式
爬虫的一般分为四步,第二个步骤就是对爬取的数据进行解析. python爬虫一般使用三种解析方式,一正则表达式,二xpath,三BeautifulSoup. 这篇博客主要记录下正则表达式的使用. 正则表 ...
- python爬虫数据解析的四种不同选择器Xpath,Beautiful Soup,pyquery,re
这里主要是做一个关于数据爬取以后的数据解析功能的整合,方便查阅,以防混淆 主要讲到的技术有Xpath,BeautifulSoup,PyQuery,re(正则) 首先举出两个作示例的代码,方便后面举例 ...
- python爬虫数据解析之xpath
xpath是一门在xml文档中查找信息的语言.xpath可以用来在xml文档中对元素和属性进行遍历. 在xpath中,有7中类型的节点,元素,属性,文本,命名空间,处理指令,注释及根节点. 节点 首先 ...
- 070.Python聚焦爬虫数据解析
一 聚焦爬虫数据解析 1.1 基本介绍 聚焦爬虫的编码流程 指定url 基于requests模块发起请求 获取响应对象中的数据 数据解析 进行持久化存储 如何实现数据解析 三种数据解析方式 正则表达式 ...
- python爬虫+数据可视化项目(关注、持续更新)
python爬虫+数据可视化项目(一) 爬取目标:中国天气网(起始url:http://www.weather.com.cn/textFC/hb.shtml#) 爬取内容:全国实时温度最低的十个城市气 ...
- python 爬虫数据存入csv格式方法
python 爬虫数据存入csv格式方法 命令存储方式:scrapy crawl ju -o ju.csv 第一种方法:with open("F:/book_top250.csv" ...
- python爬虫网页解析之lxml模块
08.06自我总结 python爬虫网页解析之lxml模块 一.模块的安装 windows系统下的安装: 方法一:pip3 install lxml 方法二:下载对应系统版本的wheel文件:http ...
- python爬虫网页解析之parsel模块
08.06自我总结 python爬虫网页解析之parsel模块 一.parsel模块安装 官网链接https://pypi.org/project/parsel/1.0.2/ pip install ...
随机推荐
- 查找文件或目录(find、locate、whereis、which、whatis)
find命令:可以按文件名.文件的类型.用户等条件来递归查找文件或目录 find [路径] [匹配表达式] ,常用选项如下 -name filename 按文件名 -user username ...
- Python之selenium自动化PART1
本文适合有经验的测试童鞋 一.Selenium自动化测试环境搭建 1.cmd --- pip install selenium==2.53.0 (如果selenium后面不跟==,表示默认安装最新版本 ...
- SCAU1143 多少个Fibonacci数--大菲波数【杭电-HDOJ-1715】--高精度加法--Fibonacci数---大数比较
/*******对读者说(哈哈如果有人看的话23333)哈哈大杰是华农的19级软件工程新手,才疏学浅但是秉着校科联的那句“主动才会有故事”还是大胆的做了一下建一个卑微博客的尝试,想法自己之后学到东西都 ...
- Java基础知识总结之多线程
1.基本概念 进程是程序的一次动态执行过程,是系统进行资源分配和调度运行的基本单位. 线程是进程的一个实体,它是比进程更小的的能够独立运行的基本单位.在引入线程的操作系统中,通常都是把进程作为分配资源 ...
- Rust 入门 (二)
我认为学习计算机语言,应该先用后学,这一节,我们来实现一个猜数字的小游戏. 先简单介绍一个这个游戏的内容:游戏先生成一个1到100之间的任意一个数字,然后我们输入自己猜测的数字,游戏会告诉我们输入的数 ...
- 选择了uniapp开发app
7月份打算做一简单app,之前公司做app的时候简单用过Dcloud公司的mui,当时由于uniapp刚出来,最终选择了mui.对uniapp的 了解几乎没有. 做app对我来说几乎是零基础的,当然是 ...
- java之初见
1.Java语言的了解: Java语言最早是由SUN公司创造出来的,1991年,SUN公司的green项目,Oak,随后SUN公司和后来的甲骨文公司又先后发布了java1.0,1.1,1.2,1.3, ...
- Virtualbox修改虚拟机分配内存的大小
起因:因为虚拟机刚开始分配的内存太小,导致太卡, 解决方法:修改虚拟机分配内存的大小 方法一:必须在关闭ubuntu的前提下进行,否则无法修改 点击设置 系统选项 主板中的内存大小 之后开启即可 方法 ...
- libgcc_s.so.1 cannot open shared object file No such file or directory
libgcc_s.so.1: cannot open shared object file: No such file or directory解决办法 背景 使用WAR包安装jenkins,在tom ...
- HTML 创建按钮实现跳转链接
1.使用 form<form method="get" action="/page2"> <button type="submit& ...